【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(-1,0),B3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn)AB的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,CD

1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABDC(提示:平行四邊形的面積=×)

2)在y軸上是否存在一點(diǎn)P,連接PAPB,使SPAB=S四邊形ABDC?若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo);若不存在,試說明理由.

3)點(diǎn)P是線段BD上的一個(gè)動(dòng)點(diǎn),連接PC,PO,當(dāng)點(diǎn)PBD上移動(dòng)時(shí)(不與B,D重合)的值是否發(fā)生變化,若不變請(qǐng)求出該值,若會(huì)變請(qǐng)并請(qǐng)說明理由.

【答案】(1)8;(2)(04)或(0,-4);(3)1,比值不變.

【解析】

1)根據(jù)點(diǎn)的平移規(guī)律得到C點(diǎn)和D點(diǎn)坐標(biāo),然后根據(jù)平行四邊形的面積公式計(jì)算四邊形ABDC的面積.

2)設(shè)P點(diǎn)坐標(biāo)為(0t),根據(jù)三角形面積公式得到×4×|t|=8,解得t=±4,然后寫出P點(diǎn)坐標(biāo);

3)作PQCD,如圖2,由CDAB得到PQAB,則根據(jù)平行線的性質(zhì)得∠1=3,∠2=4,所以∠1+2=3+4=CPO,易得

1)點(diǎn)C的坐標(biāo)為(0,2),D點(diǎn)坐標(biāo)為(4,2),

ACBD

∴四邊形ABCD為平行四邊形,

∴四邊形ABDC的面積=2×4=8

2)存在.

設(shè)P點(diǎn)坐標(biāo)為(0,t),

SPAB=S四邊形ABCD

×4×|t|=8,解得t=±4,

P點(diǎn)坐標(biāo)為(0,4)或(0,-4);

3)不變化.

PQCD,如圖2,

CDAB

PQAB,

∴∠1=3,∠2=4,

∴∠1+2=3+4=CPO

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC是等邊三角形,點(diǎn)A與點(diǎn)D的坐標(biāo)分別是A(4,0),D(10,0).

(1)如圖,當(dāng)點(diǎn)C與點(diǎn)O重合時(shí),求直線BD的表達(dá)式;

(2)如圖,點(diǎn)C從點(diǎn)O沿y軸向下移動(dòng),當(dāng)以點(diǎn)B為圓心,AB為半徑的By軸相切(切點(diǎn)為C)時(shí),求點(diǎn)B的坐標(biāo);

(3)如圖,點(diǎn)C從點(diǎn)O沿y軸向下移動(dòng),當(dāng)點(diǎn)C的坐標(biāo)為C(0,-2)時(shí),ODB的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公園的門票每張20元,一次性使用.考慮到人們的不同需求,也為了吸引更多的游客,該公園除保留原來的售票方法外,還推出了一種購(gòu)買個(gè)人年票(個(gè)人年票從購(gòu)買日起,可供持票者使用一年)的售票方法.年票分AB,C三類,A類年票每張240元,持票進(jìn)入該園區(qū)時(shí),無(wú)需再購(gòu)買門票;B類年票每張120元,持票者進(jìn)入該園區(qū)時(shí),需再購(gòu)買門票,每次4元;C類年票每張80元,持票者進(jìn)入該園區(qū)時(shí),需再購(gòu)買門票,每次6.

1)如果只能選擇一種購(gòu)買年票的方式,并且計(jì)劃在一年中花費(fèi)160元在該公園的門票上,通過計(jì)算,找出可進(jìn)入該園區(qū)次數(shù)最多的方式.

2)一年中進(jìn)入該公園超過多少次時(shí),A類年票比較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校園安全受到全社會(huì)的廣泛關(guān)注,某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:

(1)接受問卷調(diào)查的學(xué)生共有   人,扇形統(tǒng)計(jì)圖中基本了解部分所對(duì)應(yīng)扇形的圓心角為   度;

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到了解基本了解程度的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司為獎(jiǎng)勵(lì)在趣味運(yùn)動(dòng)會(huì)上取得好成績(jī)的員工,計(jì)劃購(gòu)買甲、乙兩種獎(jiǎng)品共20件,其中甲種獎(jiǎng)品每件40元,乙種獎(jiǎng)品每件30元.

(1)如果購(gòu)買甲、乙兩種獎(jiǎng)品共花費(fèi)了650元,求甲、乙兩種獎(jiǎng)品各購(gòu)買了多少件;

(2)如果購(gòu)買乙種獎(jiǎng)品的件數(shù)不超過甲種獎(jiǎng)品件數(shù)的2倍,總花費(fèi)不超過680元,求該公司有哪幾種不同的購(gòu)買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個(gè),小穎做摸球?qū)嶒?yàn),她將盒子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,下表是摸到白球的頻率折線統(tǒng)計(jì)圖:

(1)請(qǐng)估計(jì):當(dāng)很大時(shí),摸到白球的頻率將會(huì)接近 (精確到0.01);假如你摸一次,你摸到白球的概率

(2)試估算盒子里白、黑兩種顏色的球各有多少只?

(3)在(2)條件下如果要使摸到白球的概率為,需要往盒子里再放入多少個(gè)白球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點(diǎn)E,∠ABC的平分線交AD于點(diǎn)F,若BF=12,AB=10,則AE的長(zhǎng)為( 。

A. 13B. 14C. 15D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC 中,AD BC 邊上的中線.

(1)畫出與ACD 關(guān)于點(diǎn) D 成中心對(duì)稱的三角形;

(2)找出與 AC 相等的線段;

(3)探索:ABC 中,AB+AC 與中線 AD 之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知銳角ABC內(nèi)接于⊙O,連接AO并延長(zhǎng)交BC于點(diǎn)D

1)求證:ACB+BAD=90°;

2)過點(diǎn)DDEABE,若∠ADC=2ACB.求證:AC=2DE.

查看答案和解析>>

同步練習(xí)冊(cè)答案