【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(-1,0),B(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,CD.
(1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABDC.(提示:平行四邊形的面積=底×高)
(2)在y軸上是否存在一點(diǎn)P,連接PA,PB,使S△PAB=S四邊形ABDC?若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo);若不存在,試說明理由.
(3)點(diǎn)P是線段BD上的一個(gè)動(dòng)點(diǎn),連接PC,PO,當(dāng)點(diǎn)P在BD上移動(dòng)時(shí)(不與B,D重合)的值是否發(fā)生變化,若不變請(qǐng)求出該值,若會(huì)變請(qǐng)并請(qǐng)說明理由.
【答案】(1)8;(2)(0,4)或(0,-4);(3)1,比值不變.
【解析】
(1)根據(jù)點(diǎn)的平移規(guī)律得到C點(diǎn)和D點(diǎn)坐標(biāo),然后根據(jù)平行四邊形的面積公式計(jì)算四邊形ABDC的面積.
(2)設(shè)P點(diǎn)坐標(biāo)為(0,t),根據(jù)三角形面積公式得到×4×|t|=8,解得t=±4,然后寫出P點(diǎn)坐標(biāo);
(3)作PQ∥CD,如圖2,由CD∥AB得到PQ∥AB,則根據(jù)平行線的性質(zhì)得∠1=∠3,∠2=∠4,所以∠1+∠2=∠3+∠4=∠CPO,易得.
(1)點(diǎn)C的坐標(biāo)為(0,2),D點(diǎn)坐標(biāo)為(4,2),
∵AC∥BD,
∴四邊形ABCD為平行四邊形,
∴四邊形ABDC的面積=2×4=8;
(2)存在.
設(shè)P點(diǎn)坐標(biāo)為(0,t),
∵S△PAB=S四邊形ABCD,
∴×4×|t|=8,解得t=±4,
∴P點(diǎn)坐標(biāo)為(0,4)或(0,-4);
(3)不變化.
作PQ∥CD,如圖2,
∵CD∥AB,
∴PQ∥AB,
∴∠1=∠3,∠2=∠4,
∴∠1+∠2=∠3+∠4=∠CPO,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC是等邊三角形,點(diǎn)A與點(diǎn)D的坐標(biāo)分別是A(4,0),D(10,0).
(1)如圖①,當(dāng)點(diǎn)C與點(diǎn)O重合時(shí),求直線BD的表達(dá)式;
(2)如圖②,點(diǎn)C從點(diǎn)O沿y軸向下移動(dòng),當(dāng)以點(diǎn)B為圓心,AB為半徑的☉B與y軸相切(切點(diǎn)為C)時(shí),求點(diǎn)B的坐標(biāo);
(3)如圖③,點(diǎn)C從點(diǎn)O沿y軸向下移動(dòng),當(dāng)點(diǎn)C的坐標(biāo)為C(0,-2)時(shí),求∠ODB的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公園的門票每張20元,一次性使用.考慮到人們的不同需求,也為了吸引更多的游客,該公園除保留原來的售票方法外,還推出了一種“購(gòu)買個(gè)人年票”(個(gè)人年票從購(gòu)買日起,可供持票者使用一年)的售票方法.年票分A,B,C三類,A類年票每張240元,持票進(jìn)入該園區(qū)時(shí),無(wú)需再購(gòu)買門票;B類年票每張120元,持票者進(jìn)入該園區(qū)時(shí),需再購(gòu)買門票,每次4元;C類年票每張80元,持票者進(jìn)入該園區(qū)時(shí),需再購(gòu)買門票,每次6元.
(1)如果只能選擇一種購(gòu)買年票的方式,并且計(jì)劃在一年中花費(fèi)160元在該公園的門票上,通過計(jì)算,找出可進(jìn)入該園區(qū)次數(shù)最多的方式.
(2)一年中進(jìn)入該公園超過多少次時(shí),A類年票比較合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有 人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為 度;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司為獎(jiǎng)勵(lì)在趣味運(yùn)動(dòng)會(huì)上取得好成績(jī)的員工,計(jì)劃購(gòu)買甲、乙兩種獎(jiǎng)品共20件,其中甲種獎(jiǎng)品每件40元,乙種獎(jiǎng)品每件30元.
(1)如果購(gòu)買甲、乙兩種獎(jiǎng)品共花費(fèi)了650元,求甲、乙兩種獎(jiǎng)品各購(gòu)買了多少件;
(2)如果購(gòu)買乙種獎(jiǎng)品的件數(shù)不超過甲種獎(jiǎng)品件數(shù)的2倍,總花費(fèi)不超過680元,求該公司有哪幾種不同的購(gòu)買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個(gè),小穎做摸球?qū)嶒?yàn),她將盒子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,下表是“摸到白球”的頻率折線統(tǒng)計(jì)圖:
(1)請(qǐng)估計(jì):當(dāng)很大時(shí),摸到白球的頻率將會(huì)接近 (精確到0.01);假如你摸一次,你摸到白球的概率 .
(2)試估算盒子里白、黑兩種顏色的球各有多少只?
(3)在(2)條件下如果要使摸到白球的概率為,需要往盒子里再放入多少個(gè)白球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點(diǎn)E,∠ABC的平分線交AD于點(diǎn)F,若BF=12,AB=10,則AE的長(zhǎng)為( 。
A. 13B. 14C. 15D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC 中,AD 是 BC 邊上的中線.
(1)畫出與△ACD 關(guān)于點(diǎn) D 成中心對(duì)稱的三角形;
(2)找出與 AC 相等的線段;
(3)探索:△ABC 中,AB+AC 與中線 AD 之間的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知銳角△ABC內(nèi)接于⊙O,連接AO并延長(zhǎng)交BC于點(diǎn)D.
(1)求證:∠ACB+∠BAD=90°;
(2)過點(diǎn)D作DE⊥AB于E,若∠ADC=2∠ACB.求證:AC=2DE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com