【題目】已知:如圖,AD是△ABC的中線,E為AD的中點,過點A作AF∥BC交BE延長線于點F,連接CF.
(1)如圖1,求證:四邊形ADCF是平行四邊形;
(2)如圖2,連接CE,在不添加任何輔助線的情況下,請直接寫出圖2中所有與△BDE面積相等的三角形.
【答案】(1)證明見解析;(2)△AEF、 △ABE、 △ACE 、△CDE.
【解析】
(1)證明△AEF≌△DEB,可得AF=DB,再根據(jù) BD=CD可得AF=CD,再由AF//CD,根據(jù)有一組對邊平行且相等的四邊形是平行四邊形即可證得結論;
(2)根據(jù)三角形中線將三角形分成面積相等的兩個三角形以及全等三角形的面積相等即可得.
(1)D為BC的點、E為AD的中點
BD=CD、AE=DE
AF∥BC,
∴∠AFE=∠DBE,
在△AEF和△DEB中
,
∴△AEF≌△DEB,
∴AF=DB,
又∵ BD=CD
∴AF=CD,
又AF∥BC,
∴四邊形ADCF是平行四邊形;
(2)∵△AEF≌△DEB,
∴S△AEF=S△DEB,
∵D為BC中點,
∴S△CDE=S△DEB,
∵E為AD中點,
∴S△ABE=S△DEB,S△ACE= S△CDE=S△DEB,
綜上,與△BDE面積相等的三角形有△AEF、 △ABE、 △ACE 、△CDE.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小格的頂點叫格點,網(wǎng)格中有以格點A、B、C為頂點的△ABC,請你根據(jù)所學的知識回答下列問題:
(1)求△ABC的面積;(2)判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】課堂上,老師在黑板上出了一道題:在同一平面內(nèi),若∠AOB=70°,∠BOC=15°24′36″,求∠AOC的度數(shù).
下面是七年級同學小明在黑板上寫的解題過程:
解:根據(jù)題意可畫出圖(如圖1)
因為∠AOB=70°,∠BOC=15°24′36″,
所以∠AOC=∠AOB+∠BOC
=70°+15°24′36″
=85°24′36″
即得到∠AOC=85°24′36″
同學們在下面議論,都說小明解答不全面,還有另一種情況.請按下列要求完成這道題的求解.
(1)依照圖1,用尺規(guī)作圖的方法將另一種解法的圖形在圖2中補充完整.
(2)結合第(1)小題的圖形寫出求∠AOC的度數(shù)的完整過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,將一張矩形紙片ABCD沿著對角線BD向上折疊,頂點C落到點E處,BE交AD于點F.
(1)求證:△BDF是等腰三角形;
(2)如圖2,過點D作DG∥BE,交BC于點G,連接FG交BD于點O.
①判斷四邊形BFDG的形狀,并說明理由;
②若AB=6,AD=8,求FG的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,折線ABCDE描述了一汽車在某一直路上行駛時汽車離出發(fā)地的距離s(千米)和行駛時間t(小時)間的變量關系,則下列結論正確的是( )
A. 汽車共行駛了120千米
B. 汽車在行駛途中停留了2小時
C. 汽車在整個行駛過程中的平均速度為每小時24千米
D. 汽車自出發(fā)后3小時至5小時間行駛的速度為每小時60千米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市居民用水實行階梯水價,實施細則如下表:
分檔水量 | 年用水量 (立方米) | 水價 (元/立方米) |
第一階梯 | 0~180(含) | 5.00 |
第二階梯 | 181~260(含) | 7.00 |
第三階梯 | 260以上 | 9.00 |
例如,某戶家庭年使用自來水200 m3,應繳納:180×5+(200-180)×7=1040元;
某戶家庭年使用自來水300 m3,應繳納:180×5+(260-180)×7+(300-260)×9=1820元.
(1)小剛家2017年共使用自來水170 m3,應繳納 元;小剛家2018年共使用自來水260 m3,應繳納 元.
(2)小強家2018年使用自來水共繳納1180元,他家2018年共使用了多少自來水?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中正確的是( )
A. 若|a|=﹣a,則 a 一 定是負數(shù)
B. 單項式 x3y2z 的系數(shù)為 1,次數(shù)是 6
C. 若 AP=BP,則點 P 是線段 AB 的中點
D. 若∠AOC=∠AOB,則射線 OC 是∠AOB 的平分線
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線MN與x軸、y軸分別交于點M、N,并且經(jīng)過第二、三、四象限,與反比例函數(shù)y=(k<0)的圖象交于點A、B,過A、B兩點分別向x軸、y軸作垂線,垂足為C、D、E、F,AD與BF交于G點.
(1)比較大。S矩形ACOD S矩形BEOF(填“>,=,<”).
(2)求證:①AGGE=BFBG;
②AM=BN;
(3)若直線AB的解析式為y=﹣2x﹣2,且AB=3MN,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某日的錢塘江觀潮信息如圖:
按上述信息,小紅將“交叉潮”形成后潮頭與乙地之間的距離s(千米)與時間t(分鐘)的函數(shù)關系用圖3表示,其中:“11:40時甲地‘交叉潮’的潮頭離乙地12千米”記為點A(0,12),點B坐標為(m,0),曲線BC可用二次函數(shù)s=t2+bt+c(b,c是常數(shù))刻畫.
(1)求m的值,并求出潮頭從甲地到乙地的速度;
(2)11:59時,小紅騎單車從乙地出發(fā),沿江邊公路以0.48千米/分的速度往甲地方向去看潮,問她幾分鐘后與潮頭相遇?
(3)相遇后,小紅立即調轉車頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過乙地后均勻加速,而單車最高速度為0.48千米/分,小紅逐漸落后.問小紅與潮頭相遇到落后潮頭1.8千米共需多長時間?(潮水加速階段速度v=v0+(t﹣30),v0是加速前的速度).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com