【題目】如圖,已知直線x軸、y軸分別交于A, B兩點(diǎn),將△AOB沿直線AB翻折,使點(diǎn)O落在點(diǎn)C, 點(diǎn)PQ分別在AB , AC,當(dāng)PC+PQ取最小值時(shí),直線OP的解析式為(

A. y=- B. y=- C. y=- D.

【答案】A

【解析】連接COAC=AO,BC=OB,AB是線段OC的垂直平分線直線AB的解析式為,∴直線OC的解析式為y=-2x,∴設(shè)Ca,-2a).CB=OB=4,,解得a=0(舍去)或a=,C, ).設(shè)直線BC,C, )代入得 ,解得k=∴直線BC過(guò)OOQACQAB于點(diǎn)P,連接PC,PC+PQ=OQ最短∵直線OQ∥直線BC,∴直線OQ的解析式為 故選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在透明紙面上有一數(shù)軸(如圖1),折疊透明紙面.

1)若表示1的點(diǎn)與表示-1的點(diǎn)重合,則表示-7的點(diǎn)與表示 的點(diǎn)重合;

2)若表示-2的點(diǎn)與表示6的點(diǎn)重合,回答以下問(wèn)題:

①表示12的點(diǎn)與表示 的點(diǎn)重合;

②如圖2,若數(shù)軸上AB兩點(diǎn)之間的距離為2020(點(diǎn)A在點(diǎn)B的左側(cè)),且AB兩點(diǎn)經(jīng)折疊后重合,則AB兩點(diǎn)表示的數(shù)分別是

3)如圖3,若mn表示的點(diǎn)C和點(diǎn)D經(jīng)折疊后重合(mn),折痕與數(shù)軸的交點(diǎn)為折痕點(diǎn).已知線段CD上兩點(diǎn)PQ (點(diǎn)P在點(diǎn)Q的左側(cè),PQCD)PQa.當(dāng)線段PQ的端點(diǎn)與折痕點(diǎn)重合時(shí),求PQ兩點(diǎn)表示的數(shù)分別是多少?(用含m,n,a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輪船在P處測(cè)得燈塔A在正北方向,燈塔B在南偏東30°方向,輪船向正東航行了900m,到達(dá)Q處,測(cè)得A位于北偏西60°方向, B位于南偏西30°方向.

1)線段BQPQ是否相等?請(qǐng)說(shuō)明理由;

2)求A、B間的距離(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知四個(gè)車(chē)站的位置如圖所示.

(1)兩站之間的距離;(用含的代數(shù)式表示)

(2)一輛汽車(chē)從站出發(fā),每小時(shí)行駛60千米,經(jīng)過(guò)站到達(dá)C(站沒(méi)有停留).所用時(shí)間為1.5小時(shí).汽車(chē)在站短暫停留后,繼續(xù)以相同速度行駛,再行駛2小時(shí)到達(dá)站,求的值以及汽車(chē)從站行駛到站一共用了多少小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點(diǎn)A,點(diǎn)C,過(guò)點(diǎn)AABx軸,垂足為點(diǎn)A,過(guò)點(diǎn)CCBy軸,垂足為點(diǎn)C,兩條垂線相交于點(diǎn)B.

(1)線段AB,BC,AC的長(zhǎng)分別為AB=   ,BC=   ,AC=   ;

(2)折疊圖1中的ABC,使點(diǎn)A與點(diǎn)C重合,再將折疊后的圖形展開(kāi),折痕DEAB于點(diǎn)D,交AC于點(diǎn)E,連接CD,如圖2.

請(qǐng)從下列A、B兩題中任選一題作答,我選擇   題.

A:①求線段AD的長(zhǎng);

②在y軸上,是否存在點(diǎn)P,使得APD為等腰三角形?若存在,請(qǐng)直接寫(xiě)出符合條件的所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

B:①求線段DE的長(zhǎng);

②在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)B外),使得以點(diǎn)A,P,C為頂點(diǎn)的三角形與ABC全等?若存在,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC=3:2,點(diǎn)A(3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)D,且與邊BC交于點(diǎn)E,則點(diǎn)E的坐標(biāo)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“端午節(jié)”是我國(guó)的傳統(tǒng)佳節(jié),民間歷來(lái)有吃“粽子”的習(xí)俗,某食品廠為了解市民對(duì)去年銷(xiāo)售量較好的肉餡粽、豆沙粽、紅棗粽、蛋黃餡粽(以下分別用A,B,C,D表示這四種不同口味粽子的喜愛(ài)情況,在節(jié)前對(duì)某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅統(tǒng)計(jì)圖.

請(qǐng)根據(jù)以上信息回答:

(1)本次參加抽樣調(diào)查的居民有多少人?將不完整的條形圖和扇形圖補(bǔ)充完整

(2)若居民區(qū)有8000人,請(qǐng)估計(jì)愛(ài)吃C ,D粽的總?cè)藬?shù);

(3)若有外型完全相同的A,B,C,D粽各一個(gè)煮熟后,小王吃了兩個(gè),用列表或畫(huà)樹(shù)狀圖的方法,求他第二個(gè)吃到的恰好是C粽的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、B分別在x軸、y軸上(OAOB),以AB為直徑的圓經(jīng)過(guò)原點(diǎn)O,C的中點(diǎn),連結(jié)ACBC.下列結(jié)論:①AC=BC;②若OA=4,OB=2,則ABC的面積等于5③若OAOB=4,則點(diǎn)C的坐標(biāo)是(22.其中正確的結(jié)論有( )

A. 3個(gè) B. 2個(gè) C. 1個(gè) D. 0個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)x軸交于點(diǎn)A,與y軸交于點(diǎn)B.將△AOB沿過(guò)點(diǎn)B的直線折疊,使點(diǎn)O落在AB邊上的點(diǎn)D處,折痕交x軸于點(diǎn)E

1)求直線BE的解析式;

2)求點(diǎn)D的坐標(biāo);

查看答案和解析>>

同步練習(xí)冊(cè)答案