【題目】閱讀材料:各類方程的解法
求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為的形式:求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來(lái)解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為二元一次方程組來(lái)解;求解一元二次方程,把它轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解:求解分式方程,把它轉(zhuǎn)化為整式方程來(lái)解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗(yàn).各類方程的解法不盡相同,但是它們有一個(gè)共同的基本數(shù)學(xué)思想一一轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程,可以通過(guò)因式分解把它轉(zhuǎn)化為,解方程和,可得方程的解.利用上述材料給你的啟示,解下列方程;
(1);
(2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種蔬菜的銷售單價(jià)y1與銷售月份x之間的關(guān)系如圖(1)所示,成本y2與銷售月份之間的關(guān)系如圖(2)所示(圖(1)的圖象是線段圖(2)的圖象是拋物線)
(1)分別求出y1、y2的函數(shù)關(guān)系式(不寫(xiě)自變量取值范圍);
(2)通過(guò)計(jì)算說(shuō)明:哪個(gè)月出售這種蔬菜,每千克的收益最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),點(diǎn)P到點(diǎn)A,B和D的距離分別為1,2,.△ADP沿點(diǎn)A旋轉(zhuǎn)至△ABP′,連接PP′,并延長(zhǎng)AP與BC相交于點(diǎn)Q.
(1)求證:△APP′是等腰直角三角形;
(2)求∠BPQ的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別以△ABC的邊AB、AC為一邊,向外作正方形ABEF和正方形AGHC像這樣的兩個(gè)正方形稱為△ABC的“依伴正方形”
(1)如圖1,連接BG,CF相交于點(diǎn)P,求證:BG=CF且BG⊥CF;
(2)如圖2,點(diǎn)D是BC的中點(diǎn),兩個(gè)依伴正方形的中心分別為O1,O2連結(jié)O1D,O2D,O1O2:,判斷△DO1O2的形狀并說(shuō)明由;
(3)如圖2,若AB=6,AC=,∠BAC=60°,求O1O2的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)C是線段AB上一點(diǎn),AC=AB,BC為⊙O的直徑.
(1)在圖1直徑BC上方的圓弧上找一點(diǎn)P,使得PA=PB;(用尺規(guī)作圖,保留作圖痕跡,不要求寫(xiě)作法)
(2)連接PA,求證:PA是⊙O的切線;
(3)在(1)的條件下,連接PC、PB,∠PAB的平分線分別交PC、PB于點(diǎn)D、E.求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,以點(diǎn)為圓心,以3為半徑的圓,分別交軸正半軸于點(diǎn),交軸正半軸于點(diǎn),過(guò)點(diǎn)的直線交軸負(fù)半軸于點(diǎn).
(1)求兩點(diǎn)的坐標(biāo);
(2)求證:直線是⊙的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD內(nèi)接于⊙O,AC為對(duì)角線,∠ACB=∠ACD
(1)如圖1,求證:AB=AD;
(2)如圖2,點(diǎn)E在AB弧上,DE交AC于點(diǎn)F,連接BE,BE=DF,求證:DF=DC;
(3)如圖3,在(2)的條件下,點(diǎn)G在BC弧上,連接DG,交CE于點(diǎn)H,連接GE,GF,若DE=BC,EG=GH=5,S△DFG=9,求BC邊的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知是等腰直角三角形,,點(diǎn)D是BC的中點(diǎn)作正方形DEFG,使點(diǎn)A、C分別在DG和DE上,連接AE,BG.
試猜想線段BG和AE的數(shù)量關(guān)系是______;
將正方形DEFG繞點(diǎn)D逆時(shí)針?lè)较蛐D(zhuǎn),
判斷中的結(jié)論是否仍然成立?請(qǐng)利用圖2證明你的結(jié)論;
若,當(dāng)AE取最大值時(shí),求AF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的兩根分別為-3和1;④a-2b+c≥0,其中正確的命題是( )
A.①②③B.①④C.①③D.①③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com