【題目】某公司要生產(chǎn)若干件新產(chǎn)品,需要加工后才能投放市場(chǎng).現(xiàn)有紅星和巨星兩個(gè)工廠都想加工這批產(chǎn)品,已知紅星廠單獨(dú)加工這批產(chǎn)品比巨星廠單獨(dú)加工多用20天,紅星廠每天可以加工16個(gè),巨星廠每天可以加工24個(gè).公司需付紅星廠每天加工費(fèi)80元,巨星廠每天加工費(fèi)120元.

(1)這家公司要生產(chǎn)多少件新產(chǎn)品?

(2)公司制定產(chǎn)品加工方案如下:可由每個(gè)廠家單獨(dú)完成,也可由兩個(gè)廠共同合作完成.在加工過(guò)程中,公司需派一名工程師每天到廠家進(jìn)行技術(shù)指導(dǎo),并負(fù)擔(dān)每天的補(bǔ)助費(fèi)5元.請(qǐng)你幫公司選擇一種既省錢又省時(shí)的加工方案.

【答案】(1)這個(gè)公司要加工960件新產(chǎn)品;(2)由兩廠合作同時(shí)完成時(shí),即省錢又省時(shí)間.

【解析】

1)設(shè)這個(gè)公司要加工x件新產(chǎn)品,則紅星廠單獨(dú)加工這批產(chǎn)品需 天,巨星廠單獨(dú)加工這批產(chǎn)品需要天,根據(jù)題意找出等量關(guān)系:紅星廠單獨(dú)加工這批產(chǎn)品需要的天數(shù)-巨星廠單獨(dú)加工這批產(chǎn)品需要的天數(shù)=20,根據(jù)此等量關(guān)系列出方程求解即可.

2)應(yīng)分為三種情況討論:①由紅星廠單獨(dú)加工;②由巨星廠單獨(dú)加工;③由兩場(chǎng)廠共同加工,分別比較三種情況下,所耗時(shí)間和花費(fèi)金額,求出即省錢,又省時(shí)間的加工方案.

(1)設(shè)這個(gè)公司要加工x件新產(chǎn)品,則紅星廠單獨(dú)加工這批產(chǎn)品需 天,巨星廠單獨(dú)加工這批產(chǎn)品需要天,由題意得:

=20

解得:x=960.

答:這個(gè)公司要加工960件新產(chǎn)品。

(2)①由紅星廠單獨(dú)加工:需要耗時(shí)為 =60,需要費(fèi)用為:60×(5+80)=5100元;

②由巨星廠單獨(dú)加工:需要耗時(shí)為 =40,需要費(fèi)用為:40×(120+5)=5000元;

③由兩場(chǎng)廠共同加工:需要耗時(shí)為 =24,需要費(fèi)用為:24×(80+120+5)=4920.

所以,由兩廠合作同時(shí)完成時(shí),即省錢,又省時(shí)間

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P(t,0)x軸上的動(dòng)點(diǎn),Q(0,2t)y軸上的動(dòng)點(diǎn).若線段PQ與函數(shù)y=﹣|x|2+2|x|+3的圖象只有一個(gè)公共點(diǎn),則t的取值是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2-5x+c的圖象如圖所示.

(1)試求該二次函數(shù)的解析式和它的圖象的頂點(diǎn)坐標(biāo);

(2)觀察圖象回答,x何值時(shí)y的值大于0?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,二次函數(shù)y=-2x24xm的圖象與x軸的一個(gè)交點(diǎn)為A(3,0)另一個(gè)交點(diǎn)為B,且與y軸交于點(diǎn)C.

(1)m的值及點(diǎn)B的坐標(biāo);

(2)△ABC的面積;

(3)該二次函數(shù)圖象上有一點(diǎn)D(x,y)使SABDSABC,請(qǐng)求出D點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B在直線上運(yùn)動(dòng),當(dāng)線段AB最短時(shí),點(diǎn)B的坐標(biāo)為( )

A. (0,0) B. , C. , D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在△ABC中,∠ACB=90°,BC=2AC=4,點(diǎn)D在射線BC上,以點(diǎn)D為圓心,BD為半徑畫弧交邊AB于點(diǎn)E,過(guò)點(diǎn)EEFAB交邊AC于點(diǎn)F,射線ED交射線AC于點(diǎn)G

1)求證:△EFG∽△AEG

2)設(shè)FG=x,EFG的面積為y,求y關(guān)于x的函數(shù)解析式并寫出定義域;

3)聯(lián)結(jié)DF,當(dāng)△EFD是等腰三角形時(shí),請(qǐng)直接寫出FG的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某乳品公司向某地運(yùn)輸一批牛奶,由鐵路運(yùn)輸每千克需運(yùn)費(fèi)0.60元,由公路運(yùn)輸,每千克需運(yùn)費(fèi)0.30元,另需補(bǔ)助600元

(1)設(shè)該公司運(yùn)輸?shù)倪@批牛奶為x千克,選擇鐵路運(yùn)輸時(shí),所需運(yùn)費(fèi)為y1元,選擇公路運(yùn)輸時(shí),所需運(yùn)費(fèi)為y2元,請(qǐng)分別寫出y1、y2與x之間的關(guān)系式;

(2)若公司只支出運(yùn)費(fèi)1500元,則選用哪種運(yùn)輸方式運(yùn)送的牛奶多?若公司運(yùn)送1500千克牛奶,則選用哪種運(yùn)輸方式所需費(fèi)用較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(10分)某商場(chǎng)用2500元購(gòu)進(jìn)了A、B兩種新型節(jié)能臺(tái)燈共50盞,這兩種臺(tái)燈的進(jìn)價(jià),標(biāo)價(jià)如下表所示:

(1)這兩種臺(tái)燈各購(gòu)進(jìn)多少盞?

(2)若A型臺(tái)燈按標(biāo)價(jià)的九折出售,B型臺(tái)燈按標(biāo)價(jià)的八折出售,那么這批臺(tái)燈全部售完后,商場(chǎng)共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上點(diǎn)表示的數(shù)是點(diǎn)在點(diǎn)的右側(cè),且到點(diǎn)的距離是18;點(diǎn)在點(diǎn)與點(diǎn)之間,且到點(diǎn)的距離是到點(diǎn)距離的2.

(1)點(diǎn)表示的數(shù)是____________;點(diǎn)表示的數(shù)是_________;

(2)若點(diǎn)P從點(diǎn)出發(fā),沿?cái)?shù)軸以每秒4個(gè)單位長(zhǎng)度的速度向右勻速運(yùn)動(dòng);同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),沿?cái)?shù)軸以每秒2個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng)。設(shè)運(yùn)動(dòng)時(shí)間為秒,在運(yùn)動(dòng)過(guò)程中,當(dāng)為何值時(shí),點(diǎn)P與點(diǎn)Q之間的距離為6?

(3)在(2)的條件下,若點(diǎn)P與點(diǎn)C之間的距離表示為PC,點(diǎn)Q與點(diǎn)B之間的距離表示為在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻使得?若存在,請(qǐng)求出此時(shí)點(diǎn)表示的數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案