【題目】如圖,六邊形ABCDEF的六個角都是120°,邊長AB=1cm,BC=3cm,CD=3cm,DE=2cm,則這個六邊形的周長是:__.
【答案】15cm
【解析】
凸六邊形ABCDEF,并不是一規(guī)則的六邊形,但六個角都是120°,所以通過適當的向外作延長線,可得到等邊三角形,進而求解.
解:如圖,分別作直線AB、CD、EF的延長線和反向延長線使它們交于點G、H、P.
∵六邊形ABCDEF的六個角都是120°,
∴六邊形ABCDEF的每一個外角的度數都是60°,
∴△APF、△BGC、△DHE、△GHP都是等邊三角形,
∴GC=BC=3cm,DH=DE=2cm,
∴GH=3+3+2=8cm,FA=PA=PG﹣AB﹣BG=8﹣1﹣3=4cm,EF=PH﹣PF﹣EH=8﹣4﹣2=2cm,
∴六邊形的周長為1+3+3+2+4+2=15cm.
故答案為:15cm.
科目:初中數學 來源: 題型:
【題目】元旦期間,某賓館有50個房間供游客居住,當每個房間每天的定價為180元時,房間會全部住滿;當每個房間每天的定價每增加10元時,就會有一個房間空閑.如果游客居住房間,賓館需對每個房間每天支出20元的各種費用.
(1)若房價定為200元時,求賓館每天的利潤;
(2)房價定為多少時,賓館每天的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,點P為AC的中點,Q從點A運動到B,點Q運動到點B停止,連接PQ,取PQ的中點O,連接OC,OB.
(1)若△ABC∽△APQ,求BQ的長;
(2)在整個運動過程中,點O的運動路徑長_____;
(3)以O為圓心,OQ長為半徑作⊙O,當⊙O與AB相切時,求△COB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】感知:如圖①,在四邊形ABCD中,AB∥CD,∠B=90°,點P在BC邊上,當∠APD=90°時,可知△ABP∽△PCD.(不要求證明)
探究:如圖②,在四邊形ABCD中,點P在BC邊上,當∠B=∠C=∠APD時,求證:△ABP∽△PCD.
拓展:如圖③,在△ABC中,點P是邊BC的中點,點D、E分別在邊AB、AC上.若∠B=∠C=∠DPE=45°,BC=6,CE=4,則DE的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,兩幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m,CD=20m.AB和CD之間有一景觀池,小雙在A點測得池中噴泉處E點的俯角為42°,在C點測得E點的俯角為45°,點B、E、D在同一直線上.求兩幢建筑物之間的距離BD.(結果精確到0.1m)(參考數據:sin42°=0.67,cos42°=0.74,tan42°=0.90)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將矩形ABCD繞點A按逆時針方向旋轉一定角度后,BC的對應邊B′C交CD邊于點G,如果當AB′=B′G時量得AD=7,CG=4,連接BB′、CC′,那么=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC=,將△ACB繞點A逆時針旋轉60°得到△AC′B′,則CB′的長為( )
A. +B. 1+C. 3D. +
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將拋物線y1=x2﹣2x﹣3先向左平移1個單位,再向上平移4個單位后,與拋物線y2=ax2+bx+c重合,現有一直線y3=2x+3與拋物線y2=ax2+bx+c相交.當y2≤y3時自變量x的取值范圍是______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com