【題目】如圖,四邊形ABCD為矩形,H、F分別為AD、BC邊的中點,四邊形EFGH為矩形,E、G分別在AB、CD邊上,則圖中四個直角三角形面積之和與矩形EFGH的面積之比為_____

【答案】1:1

【解析】

根據(jù)矩形性質得出AD=BC,ADBC,D=90°,求出四邊形HFCD是矩形,得出HFG的面積是CD×DH=S矩形HFCD,推出SHFG=SDHG+SCFG,同理SHEF=SBEF+SAEH,即可得出答案.

連接HF,

∵四邊形ABCD為矩形,

AD=BC,ADBC,D=90°

H、F分別為AD、BC邊的中點,

DH=CF,DHCF,

∵∠D=90°,

∴四邊形HFCD是矩形,

∴△HFG的面積是CD×DH=S矩形HFCD,

SHFG=SDHG+SCFG

同理SHEF=SBEF+SAEH,

∴圖中四個直角三角形面積之和與矩形EFGH的面積之比是1:1,

故答案為:1:1.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一家圖文廣告公司制作的宣傳畫板頗受商家歡迎,這種畫板的厚度忽略不計,形狀均為正方形,邊長在10~30dm之間.每張畫板的成本價(單位:元)與它的面積(單位:dm2)成正比例,每張畫板的出售價(單位:元)由基礎價和浮動價兩部分組成,其中基礎價與畫板的大小無關,是固定不變的.浮動價與畫板的邊長成正比例.在營銷過程中得到了表格中的數(shù)據(jù).

畫板的邊長(dm)

10

20

出售價(元/張)

160

220

(1)求一張畫板的出售價與邊長之間滿足的函數(shù)關系式;

(2)已知出售一張邊長為30dm的畫板,獲得的利潤為130元(利潤=出售價-成本價),

①求一張畫板的利潤與邊長之間滿足的函數(shù)關系式;

②當邊長為多少時,出售一張畫板所獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B、E分別在ACDF上,AF分別交BD、CE于點M、N,∠A=∠F,∠1=∠2.

(1)求證:四邊形BCED是平行四邊形;

(2)已知DE=2,連接BN,若BN平分DBC,求CN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC和△ADE中,∠BAC=∠EAD,ABAC,ADAE,連接CD、AE交于點F

1)求證:BECD

2)當∠BAC=∠EAD30°,ADAB時(如圖2),延長DCAB交于點G,請直接寫出圖中除△ABC、△ADE以外的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:

如圖1,在四邊形ABCD的邊AB上任取一點E(點E不與點A、點B重合),分別連接ED,EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強相似點.解決問題:

1)如圖1A=B=DEC=55°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;

2)如圖2,在矩形ABCD中,AB=5BC=2,且A,BC,D四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖2中畫出矩形ABCD的邊AB上的一個強相似點E;

拓展探究:

3)如圖3,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處.若點E恰好是四邊形ABCM的邊AB上的一個強相似點,試探究ABBC的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O是等邊三角形ABC內(nèi)一點,∠AOB110°,∠BOCm°DABC外一點,且ADC≌△BOC,連接OD.當m_____時,AOD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設DE=x.

(1)用含x的代數(shù)式表示線段CF的長;

(2)如果把CAE的周長記作CCAE,BAF的周長記作CBAF,設=y,求y關于x的函數(shù)關系式,并寫出它的定義域;

(3)當∠ABE的正切值是時,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(-2,1),B(-1,4),C(-3,3).

(1)畫出△ABC關于y軸對稱的△A1B1C1,并寫出A1點的坐標及sin∠B1A1C1的值;

(2)以原點O為位似中心,位似比為1:2,在y軸的左側,畫出將△ABC放大后的△A2B2C2,并寫出A2點的坐標;

(3)若點D(a,b)在線段AB上,直接寫出經(jīng)過(2)的變化后點D的對應點D2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形中,已知,.

1)求的度數(shù);

2)求四邊形的面積.

查看答案和解析>>

同步練習冊答案