精英家教網 > 初中數學 > 題目詳情
P為⊙O外一點,PA、PB分別切⊙O于點A、B,∠APB=70°,點C為⊙O上一點
(不與A、B重合),則∠ACB的度數為       
55°或125°

分析:連接OA、OB,根據切線的性質得出∠OAP的度數,∠OBP的度數;再根據四邊形的內角和是360°,求出∠AOB的度數,有圓周角定理或圓內接四邊形的性質,求出∠ACB的度數即可.
解:連接OA、OB.
∵PA,PB分別切⊙O于點A,B,
∴OA⊥PA,OB⊥PB;
∴∠PAO=∠PBO=90°;
又∵∠APB=70°,
∴在四邊形AOBP中,∠AOB=360°-90°-90°-70°=110°,
∴∠ADB=×∠AOB=×110°=55°,
即當C在D處時,∠ACB=55°.
在四邊形ADBC中,∠ACB=180°-∠ADB=180°-55°=125°.
于是∠ACB的度數為55°或125°,
故答案為:55°或125°.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:單選題

如圖,直線軸、軸分別相交于兩點,圓心的坐標為,圓軸相切于點.若將圓沿軸向左移動,當圓與該直線相交時,橫坐標為整數的點的個數是(      )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖3,AB是⊙O的直徑,弦CD⊥AB,垂足為E,如果AB="10,CD=8,"

那么線段OE的長為(  )
A.5   B.4   
C.3 D.2

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知,如圖,M是弧AB的中點,過點M的弦MN交于點C,設圓O的半徑為4厘米,MN=4cm,

(1)求圓心O到弦MN的距離;
(2)求∠ACM的度數。

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

已知⊙O1和⊙O2相切,它們的半徑分別為3和1,過O1作⊙O2的切線,切點為A,則O1A的長是     

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在矩形ABCD中,點O在對角線AC上,以 OA長為半徑的⊙O與AD、AC分別交于點E、F,且∠ACB=∠DCE.

(1)求證:CE是⊙O的切線;   
(2)若tan∠ACB=,AE=7,求⊙O的直徑.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如右圖,是圓的兩條弦,是圓的一條直徑,且平分,下列結論中不一定正確的是(   )
A.B.C.D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,有一枚圓形硬幣,如果要在這枚硬幣的周圍擺放幾枚與它完全相同的硬幣,使得周圍的硬幣都和這枚硬幣相外切,且相鄰的硬幣相外切,則這枚硬幣周圍最多可擺放
A.4枚硬幣B.5枚硬幣C.6枚硬幣D.8枚硬幣

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,⊙O是外接圓,,BD為⊙的直徑,BD=2,連結CD,求BC的長

查看答案和解析>>

同步練習冊答案