【題目】如圖,已知數(shù)軸上有A、B、C三個(gè)點(diǎn),它們表示的數(shù)分別是-24,-10,10.A、B兩點(diǎn)間的距離記為“AB”.
(1)填空:AB= ,BC= ;
(2)若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒3個(gè)單位 長(zhǎng)度和7個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t,用含t的代數(shù)式表示BC和AB的長(zhǎng),試探索:BC - AB的值是否隨著時(shí)間t的變化而改變?請(qǐng)說明理由.
(3)現(xiàn)有動(dòng)點(diǎn)P、Q都從A點(diǎn)出發(fā),點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)C移動(dòng);當(dāng)點(diǎn)P 移動(dòng)到B點(diǎn)時(shí),點(diǎn)Q才從A點(diǎn)出發(fā),并以每秒3個(gè)單位長(zhǎng)度的速度向右移動(dòng),且當(dāng)點(diǎn)P到達(dá)C點(diǎn)時(shí),點(diǎn)Q就停止移動(dòng).設(shè)點(diǎn)P移動(dòng)的時(shí)間為t秒,問:當(dāng)t為多少時(shí)P、Q兩點(diǎn)相距6個(gè)單位長(zhǎng)度?
【答案】(1)14,20;(2)答案見解析;(3)答案見解析.
【解析】
(1)根據(jù)數(shù)軸上任意兩點(diǎn)間的距離公式等于這兩點(diǎn)所表示的數(shù)的差的絕對(duì)值而得出結(jié)論;
(2)先分別求出t秒后A、B、C三點(diǎn)所對(duì)應(yīng)的數(shù),就可以表示出BC,AB的值,從而求出BC-AB的值而得出結(jié)論;
(3)經(jīng)過t秒后,表示P、Q兩點(diǎn)所對(duì)應(yīng)的數(shù),根據(jù)題意列出關(guān)于t的方程,求出方程的解得到t的值,分三種情況考慮,分別求出滿足題意t的值即可.
解:(1)AB=,BC=;
故答案為:14;20;
(2)答:不變.∵經(jīng)過t秒后,A、B、C三點(diǎn)所對(duì)應(yīng)的數(shù)分別是-24-t,-10+3t,10+7t,
∴BC=(10+7t)-(-10+3t)=4t+20,
AB=(-10+3t)-(-24-t)=4t+14,
∴BC-AB=(4t+20)-(4t+14)=6.
∴BC-AB的值不會(huì)隨著時(shí)間t的變化而改變.
(3)根據(jù)題意,可知經(jīng)過t秒后,P、Q兩點(diǎn)所對(duì)應(yīng)的數(shù)分別是-24+t,-24+3(t-14),
由-24+3(t-14)-(-24+t)=0解得t=21,
當(dāng)0<t≤14時(shí),點(diǎn)Q還在點(diǎn)A處,
∴PQ=t=6;
當(dāng)14<t≤21時(shí),點(diǎn)P在點(diǎn)Q的右邊,
∴PQ=(-24+t)-[-24+3(t-14)]=-2t+42=6,
∴t=18;
當(dāng)21<t≤34時(shí),點(diǎn)Q在點(diǎn)P的右邊,
∴PQ=[-24+3(t-14)]-(-24+t)=2t-42=6,
∴t=24
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了增強(qiáng)環(huán)境保護(hù)意識(shí),在環(huán)保局工作人員指導(dǎo)下,若干名“環(huán)保小衛(wèi)士” 組成了“控制噪聲污染”課題學(xué)習(xí)研究小組.在“世界環(huán)境日”當(dāng)天,該小組抽樣 調(diào)查了全市 40 個(gè)噪聲測(cè)量點(diǎn)在某時(shí)刻的噪聲聲級(jí)(單位:dB),將調(diào)查的數(shù)據(jù)進(jìn)行
處理(設(shè)所測(cè)數(shù)據(jù)均為正整數(shù)),得頻數(shù)分布表如下:
組別 | 噪聲聲級(jí)分組 | 頻數(shù) | 頻率 |
1 | 44.5~59.5 | 4 | 0.1 |
2 | 59.5~74.5 | a | 0.2 |
3 | 74.5~89.5 | 10 | 0.25 |
4 | 89.5~104.5 | b | c |
5 | 104.5~119.5 | 6 | 0.15 |
合計(jì) | 40 | 1.00 |
根據(jù)表中提供的信息解答下列問題:
(1)頻數(shù)分布表中的a= , b= , c= ;
(2)補(bǔ)充完整頻數(shù)分布直方圖;
(3)如果全市共有 300 個(gè)測(cè)量點(diǎn),那么在這一時(shí)刻噪聲聲級(jí)小于 75dB 的測(cè)量點(diǎn)約有多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AD⊥BC,垂足是D,E是線段AD上的點(diǎn),且AD=BD,DE=DC.
⑴ 求證:∠BED=∠C;
⑵ 若AC=13,DC=5,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是邊長(zhǎng)為3的等邊三角形,點(diǎn)D是邊BC上的一點(diǎn),且BD=1,以AD為邊作等邊△ADE,過點(diǎn)E作EF∥BC,交AC于點(diǎn)F,連接BF,則下列結(jié)論中①△ABD≌△BCF;②四邊形BDEF是平行四邊形;③S四邊形BDEF=;④S△AEF=.其中正確的有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC的頂點(diǎn)A、B在x軸上,點(diǎn)C在y軸上正半軸上,且
A(-1,0),B(4,0),∠ACB=90°.
(1)求過A、B、C三點(diǎn)的拋物線解析式;
(2)設(shè)拋物線的對(duì)稱軸l與BC邊交于點(diǎn)D,若P是對(duì)稱軸l上的點(diǎn),且滿足以P、C、D為頂點(diǎn)的三角形與△AOC相似,求P點(diǎn)的坐標(biāo);
(3)在對(duì)稱軸l和拋物線上是否分別存在點(diǎn)M、N,使得以A、O、M、N為頂點(diǎn)的四邊形是平行四邊形,若存在請(qǐng)直接寫出點(diǎn)M、點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
圖1 備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 ABCD中,CD=2AD,BE⊥AD于點(diǎn)E,F(xiàn)為DC的中點(diǎn),連結(jié)EF、BF,下列結(jié)論:①∠ABC=2∠ABF;②EF=BF;③S四邊形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正確結(jié)論的個(gè)數(shù)共有( ).
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲從A地出發(fā)步行到B地,乙同時(shí)從B地步行出發(fā)至A地,2小時(shí)后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小時(shí).若設(shè)甲剛出發(fā)時(shí)的速度為a千米/小時(shí),乙剛出發(fā)的速度為b千米/小時(shí).
(1)A、B兩地的距離可以表示為 千米(用含a,b的代數(shù)式表示);
(2)甲從A到B所用的時(shí)間是: 小時(shí)(用含a,b的代數(shù)式表示);
乙從B到A所用的時(shí)間是: 小時(shí)(用含a,b的代數(shù)式表示).
(3)若當(dāng)甲到達(dá)B地后立刻按原路向A返行,當(dāng)乙到達(dá)A地后也立刻按原路向B地返行.甲乙二人在第一次相遇后3小時(shí)36分鐘又再次相遇,請(qǐng)問AB兩地的距離為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市從2018年1月1日開始,禁止燃油助力車上路,于是電動(dòng)自行車的市場(chǎng)需求量日漸增多.某商店計(jì)劃最多投入8萬(wàn)元購(gòu)進(jìn)A、B兩種型號(hào)的電動(dòng)自行車共30輛,其中每輛B型電動(dòng)自行車比每輛A型電動(dòng)自行車多500元.用5萬(wàn)元購(gòu)進(jìn)的A型電動(dòng)自行車與用6萬(wàn)元購(gòu)進(jìn)的B型電動(dòng)自行車數(shù)量一樣.
(1)求A、B兩種型號(hào)電動(dòng)自行車的進(jìn)貨單價(jià);
(2)若A型電動(dòng)自行車每輛售價(jià)為2800元,B型電動(dòng)自行車每輛售價(jià)為3500元,設(shè)該商店計(jì)劃購(gòu)進(jìn)A型電動(dòng)自行車m輛,兩種型號(hào)的電動(dòng)自行車全部銷售后可獲利潤(rùn)y元.寫出y與m之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,該商店如何進(jìn)貨才能獲得最大利潤(rùn)?此時(shí)最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在數(shù)軸上有A,B兩點(diǎn),所表示的數(shù)分別為-10,4,點(diǎn)A以每秒5個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),同時(shí)點(diǎn)B以每秒3個(gè)單位長(zhǎng)度的速度也向左運(yùn)動(dòng),如果設(shè)運(yùn)動(dòng)時(shí)間為t秒,解答下列問題:
(1)運(yùn)動(dòng)前線段AB的長(zhǎng)為 ; 運(yùn)動(dòng)1秒后線段AB的長(zhǎng)為 ;
(2)運(yùn)動(dòng)t秒后,點(diǎn)A,點(diǎn)B運(yùn)動(dòng)的距離分別為 ;用t表示A,B分別為 .
(3)求t為何值時(shí),點(diǎn)A與點(diǎn)B恰好重合;
(4)在上述運(yùn)動(dòng)的過程中,是否存在某一時(shí)刻t,使得線段AB的長(zhǎng)為6,若存在,求t的值; 若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com