已知⊙0的半徑為1,圓心0到直線l的距離為2,過l上任一點A作⊙0的切線,切點為B,則線段AB的最小值為( 。
A.1B.
2
C.
3
D.2
如右圖所示,OA⊥l,AB是切線,連接OB,
∵OA⊥l,
∴OA=2,
又∵AB是切線,
∴OB⊥AB,
在Rt△AOB中,AB=
OA2-OB2
=
22-12
=
3

故選C.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

若⊙O所在平面內一點P到⊙O上的點的最大距離為m,最小距離為n(m>n),則此圓的半徑為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,⊙O的割線PAB交⊙O于點A、B,PA=7cm,AB=5cm,PO=10cm,則⊙O的半徑為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,C是AB延長線上的一點,CD是⊙O的切線,D為切點,過點B作⊙O的切線交CD于點E.若AB=CD=2,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知等腰△ABC,AC=BC=10,AB=12,以BC為直徑作⊙O交AB點D,交AC于點G,DF⊥AC,垂足為F,交CB的延長線于點E.
(1)求證:直線EF是⊙O的切線;
(2)求sin∠A的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,AB為⊙O的直徑,AD與⊙O相切于點A,DE與⊙O相切于點E,點C為DE延長線上一點,且CE=CB.
(1)求證:BC為⊙O的切線;
(2)連接AE,AE的延長線與BC的延長線交于點G(如圖2所示),若AB=2
5
,AD=2,求線段BC和EG的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,OA、OB是⊙O的兩條半徑,且OA⊥OB,點C是OB延長線上任意一點,過點C作CD切⊙O于點D,連接AD交OC于點E,猜想:△DCE是怎樣的三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,Rt△ABC,∠ACB=90°,點E是邊BC上一點,過點E作FE⊥BC(垂足為E)交AB于點F,且EF=AF,以點E為圓心,EC長為半徑作⊙E交BC于點D.
(1)求證:斜邊AB是⊙E的切線;
(2)設若AB與⊙E相切的切點為G,AC=8,EF=5,連DA、DG,求S△ADG

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知:如圖,以定線段AB為直徑作半圓O,P為半圓上任意一點(異于A、B),過點P作半圓O的切線分別交過A、B兩點的切線于D、C,連接OC、BP,過點O作OMCD分別交BC與BP于點M、N.下列結論:
①S四邊形ABCD=
1
2
AB•CD;
②AD=AB;
③AD=ON;
④AB為過O、C、D三點的圓的切線.
其中正確的個數(shù)有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習冊答案