【題目】已知拋物線C1:y=﹣x2+4x﹣3,把拋物線C1先向右平移3個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度,得到拋物線C2 ,將拋物線C1和拋物線C2這兩個(gè)圖象在x軸及其上方的部分記作圖象M.若直線y=kx+ 與圖象M至少有2個(gè)不同的交點(diǎn),則k的取值范圍是________

【答案】0≤k<

【解析】

首先配方得出二次函數(shù)頂點(diǎn)式,求得拋物線C1的頂點(diǎn)坐標(biāo),進(jìn)而利用二次函數(shù)平移規(guī)律得出拋物線C2,求得頂點(diǎn)坐標(biāo),把兩點(diǎn)頂點(diǎn)坐標(biāo)代入即可求得.

y=﹣x2+4x﹣3=+1,

拋物線C1的頂點(diǎn)(2,1)

則將拋物線y=﹣x2+4x﹣3先向右平移3個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度,

得到的新的拋物線C2的解析式為:y=+4.

拋物線C2頂點(diǎn)(5,4),

(2,1)代入y=kx+ (k0),1=2k+,

解得k=

(5,4)代入y=kx+ (k0),4=5k+ ,

解得k=

直線y=kx+ (k0)與圖象M至少有2個(gè)不同的交點(diǎn),k的取值范圍是0k<.

故答案為:0k<.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知直線y=x+3x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過(guò)A、B兩點(diǎn),與x軸交于另一個(gè)點(diǎn)C,對(duì)稱軸與直線AB交于點(diǎn)E,拋物線頂點(diǎn)為D

1)求拋物線的解析式;

2)在第三象限內(nèi),F為拋物線上一點(diǎn),以A、E、F為頂點(diǎn)的三角形面積為3,求點(diǎn)F的坐標(biāo);

3)點(diǎn)P從點(diǎn)D出發(fā),沿對(duì)稱軸向下以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),以P、BC為頂點(diǎn)的三角形是直角三角形?直接寫出所有符合條件的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(感知)如圖,在四邊形ABCD中,點(diǎn)P在邊AB上(點(diǎn)P不與點(diǎn)A、B重合),∠A=∠B=∠DPC=90°.易證:△DAP∽△PBC(不要求證明).

(探究)如圖,在四邊形ABCD中,點(diǎn)P在邊AB上(點(diǎn)P不與點(diǎn)A、B重合),∠A=∠B=∠DPC.

(1)求證:△DAP~△PBC.

(2)PD=5,PC=10,BC=9,求AP的長(zhǎng).

(應(yīng)用)如圖,在△ABC中,AC=BC=4,AB=6,點(diǎn)P在邊AB上(點(diǎn)P不與點(diǎn)A、B重合),連結(jié)CP,作∠CPE=∠A,PE與邊BC交于點(diǎn)E.當(dāng)CE=3EB時(shí),求AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把一副三角板如圖甲放置,其中∠ACB=DEC=90°,A=45°,D=30°,斜邊AB=6,DC=7,把三角板DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)15°得到D1CE1(如圖乙),此時(shí)ABCD1交于點(diǎn)O,則線段AD1的長(zhǎng)為( 。

A. B. 5 C. 4 D.

【答案】B

【解析】由旋轉(zhuǎn)的性質(zhì)可知,在圖乙中,∠BCE1=15°,∠D1CE1=60°,AB=6,CD1=CD=7,

∴∠D1CB=60°-15°=45°,

∵∠ACB=90°,

∴CO平分∠ACB

又∵AC=BC,

COABCO=AO=BO=AB=3,

∴D1O=CD1-CO=7-3=4,∠AOD1=90°

RtAOD1中,AD1=.

故選B.

點(diǎn)睛本題解題的關(guān)鍵是由旋轉(zhuǎn)的性質(zhì)證明∠D1CB=45°,從而得到CD1平分∠ACB,結(jié)合等腰三角形的“三線合一”證得∠AOD1=90°,并求得AO=3,OD1=4;這樣問(wèn)題就變得很簡(jiǎn)單了.

型】單選題
結(jié)束】
10

【題目】我市某小區(qū)實(shí)施供暖改造工程,現(xiàn)甲、乙兩工程隊(duì)分別同時(shí)開挖兩條600米長(zhǎng)的管道,所挖管道長(zhǎng)度y(米)與挖掘時(shí)間x(天)之間的關(guān)系如圖所示,則下列說(shuō)法中,正確的個(gè)數(shù)有( )個(gè).

甲隊(duì)每天挖100米;

乙隊(duì)開挖兩天后,每天挖50米;

當(dāng)x=4時(shí),甲、乙兩隊(duì)所挖管道長(zhǎng)度相同;

甲隊(duì)比乙隊(duì)提前2天完成任務(wù).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四位同學(xué)在研究函數(shù)y=x2+bx+c(b,c是常數(shù))時(shí),甲發(fā)現(xiàn)當(dāng)x=1時(shí),函數(shù)有最小值;乙發(fā)現(xiàn)﹣1是方程x2+bx+c=0的一個(gè)根;丙發(fā)現(xiàn)函數(shù)的最小值為3;丁發(fā)現(xiàn)當(dāng)x=2時(shí),y=4,已知這四位同學(xué)中只有一位發(fā)現(xiàn)的結(jié)論是錯(cuò)誤的,則該同學(xué)是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形OABC的邊長(zhǎng)為2,頂點(diǎn)A,C分別在x軸,y軸的正半軸上,點(diǎn)E是BC的中點(diǎn),F(xiàn)是AB延長(zhǎng)線上一點(diǎn)且FB=1.

(1)求經(jīng)過(guò)點(diǎn)O,A,E三點(diǎn)的拋物線解析式;

(2)點(diǎn)P在拋物線上運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí)△OAP的面積為2,請(qǐng)求出點(diǎn)P的坐標(biāo);

(3)在拋物線上是否存在一點(diǎn)Q,使△AFQ是等腰直角三角形?若存在直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分10分)已知二次函數(shù)

(1)當(dāng)時(shí),函數(shù)值的增大而減小,求的取值范圍。

(2)以拋物線的頂點(diǎn)為一個(gè)頂點(diǎn)作該拋物線的內(nèi)接正三角形,兩點(diǎn)在拋物線上),請(qǐng)問(wèn):的面積是與無(wú)關(guān)的定值嗎?若是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由。

(3)若拋物線軸交點(diǎn)的橫坐標(biāo)均為整數(shù),求整數(shù)的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在△ABC中,ADBC邊上的中線.

(1)畫出與△ACD關(guān)于點(diǎn)D成中心對(duì)稱的三角形;

(2)找出與AC相等的線段;

(3)探究:△ABCABAC的和與中線AD之間有何大小關(guān)系?并說(shuō)明理由;

(4)AB=5,AC=3,求線段AD的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AE是圓O的直徑,點(diǎn)BAE的延長(zhǎng)線上,點(diǎn)D在圓O上,且AC⊥DCAD平分∠EAC

(1)求證:BC是圓O的切線。

(2)BE=8,BD=12,求圓O的半徑,

查看答案和解析>>

同步練習(xí)冊(cè)答案