【題目】如圖,在平面直角坐標系中,直線11:y=k1x+3分別與x軸,y軸交于A(﹣3,0),B兩點,與直線l2:y=k2x交于點C,S△AOC=9.
(1)求tan∠BAO的值;
(2)求出直線l2的解析式;
(3)P為線段AC上一點(不含端點),連接OP,一動點H從點O出發(fā),沿線段OP以每秒1個單位長度的速度運動到P,再沿線段PC以每秒個單位長度的速度運動到點C后停止,請直接寫出點H在整個運動過程的最少用時.
【答案】(1)1;(2)y=2x;(3)6秒.
【解析】
(1)先求直線l1的解析式,從而可以求點B,點A的坐標,求出OA和OB即可求得tan∠BAO=;
(2)由S△AOC=9,OA=3即可求點C的縱坐標,點C是直線l1與直線l2的交點,即可求出直線l2的解析式;
(3)過點C作CJ⊥y軸于J,過點P作PQ⊥CJ于點Q,由題意得,點H在整個運動過程的用時t==OP+QP,即點H在整個運動過程所用的時間是線段PO與PH的長度之和,也就是點O、P、Q共線時有最小值.
(1)∵直線11:y=k1x+3經(jīng)過點A(﹣3,0),
∴0=﹣3k1+3,即k1=1且OA=3
故直線11的解析式為:y=x+3
∴直線l1:y=x+3與y軸交點是B(0,3)即OB=3
故tan∠BAO=.
(2)∵S△AOC=9,OA=3
∴點C到OA也就是到x軸的距離是6,由圖可設C(x,6)
∵C(x,6)是直線l1:y=x+3與直線l2:y=k2x的交點
∴,解得
故直線l2的解析式是:y=2x.
(3)如圖,過點C作CJ⊥y軸于J,過點P作PQ⊥CJ于點Q,
∵動點H從點O出發(fā),沿線段OP以每秒1個單位長度的速度運動到P,遭到沿線段PC以每秒個單位長度的速度運動到點C后停止
∴點H在整個運動過程的用時,
∵tan∠BAO=知∠BAO=45°
故∠CPQ=∠ABO=45°
∴PQ=PCcos∠CPQ==
∴即點H在整個運動過程所用的時間是線段PO與PH的長度之和
∴當點P與點B重合,也就是點O、P、Q共線時,OP+QP取得最小值,且(OP+QP)最小=OJ=6,
即點H在整個運動過程所用時間的最小值為6秒.
科目:初中數(shù)學 來源: 題型:
【題目】如圖直角坐標系中,以M(3,0)為圓心的⊙M交x軸負半軸于A,交x軸正半軸于B,交y軸于C、D.
(1)若C點坐標為(0,4),求點A坐標.
(2)在(1)的條件下,在⊙M上,是否存在點P,使∠CPM=45°,若存在,求出滿足條件的點P.
(3)過C作⊙M的切線CE,過A作AN⊥CE于F,交⊙M于N,當⊙M的半徑大小發(fā)生變化時.AN的長度是否變化?若變化,求變化范圍,若不變,證明并求值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,∠ACB=90°,∠BAC=60°,AC=6,AD平分∠BAC,交邊BC于點D,過點D作CA的平行線,交邊AB于點E.
(1)求線段DE的長;
(2)取線段AD的中點M,聯(lián)結(jié)BM,交線段DE于點F,延長線段BM交邊AC于點G,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某網(wǎng)店正在熱銷一款電子產(chǎn)品,其成本為10元/件,銷售中發(fā)現(xiàn),該商品每天的銷售量y(件)與銷售單價x(元/件)之間存在如圖所示的關(guān)系:
(1)請求出y與x之間的函數(shù)關(guān)系式;
(2)該款電子產(chǎn)品的銷售單價為多少元時,每天銷售利潤最大?最大利潤是多少元;
(3)由于武漢爆發(fā)了“新型冠狀病毒”疫情,該網(wǎng)店店主決定從每天獲得的利潤中抽出300元捐贈給武漢,為了保證捐款后每天剩余利潤不低于450元,如何確定該款電子產(chǎn)品的銷售單價?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知點A,對點A作如下變換:
第一步:作點A關(guān)于x軸的對稱點A1;第二步:以O為位似中心,作線段OA1的位似圖形OA2,且相似比=q,則稱A2是點A的對稱位似點.
(1)若A(2,3),q=2,直接寫出點A的對稱位似點的坐標;
(2)已知直線l:y=kx-2,拋物線C:y=-x2+mx-2(m>0).點N(,2k-2)在直線l上.
①當k=時,判斷E(1,-1)是否是點N的對稱位似點,請說明理由;
②若直線l與拋物線C交于點M(x1,y1)(x1≠0),且點M不是拋物線的頂點,則點M的對稱位似點是否可能仍在拋物線C上?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;
(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在面積都相等的所有矩形中,當其中一個矩形的一邊長為1時,它的另一邊長為3.
(1)設矩形的相鄰兩邊長分別為x,y.
①求y關(guān)于x的函數(shù)表達式;
②當y≥3時,求x的取值范圍;
(2)圓圓說其中有一個矩形的周長為6,方方說有一個矩形的周長為10,你認為圓圓和方方的說法對嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了創(chuàng)建全國衛(wèi)生城市,某社區(qū)要清理一個衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車運送,兩車各運12趟可完成,需支付運費4800元.已知甲、乙兩車單獨運完此堆垃圾,乙車所運趟數(shù)是甲車的2倍,且乙車每趟運費比甲車少200元.
(1)求甲、乙兩車單獨運完此堆垃圾各需運多少趟?
(2)若單獨租用一臺車,租用哪臺車合算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖①表示的是某商場2012年前四個月中兩個月的商品銷售額的情況,圖②表示的是商場家電部各月銷售額占商場當月銷售總額的百分比情況,觀察圖①、圖②解答下列問題:
(1)商場前四個月財務結(jié)算顯示四月份商場的商品銷售額比一月份下降了20%,請你求出商場四月份的銷售額;
(2)若商場前四個月的商品銷售總額一共是500萬元,請你根據(jù)這一信息將圖①中的統(tǒng)計圖補充完整;
(3)小明觀察圖②后認為,商場家電部四月份的銷售額比三月份減少了,你同意他的看法嗎?請你說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com