【題目】小明同學(xué)騎自行車去郊外春游,如圖表示他離家的距離y(千米)與所用的時(shí)間x(小時(shí))之間關(guān)系的函數(shù)圖象.
(1)根據(jù)圖象回答:小明到達(dá)離家最遠(yuǎn)的地方需 小時(shí),
(2)小明出發(fā)兩個(gè)半小時(shí)離家 千米.
(3)小明出發(fā) 小時(shí)離家12千米.
【答案】(1)3;(2)22.5;(3)或
【解析】
試題分析:(1)根據(jù)分段函數(shù)的圖象上點(diǎn)的坐標(biāo)的意義可知:小明到達(dá)離家最遠(yuǎn)的地方需3小時(shí);
(2)因?yàn)镃(2,15)、D(3,30)在直線上,運(yùn)用待定系數(shù)法求出解析式后,把x=2.5代入解析式即可;
(3)分別利用待定系數(shù)法求得過(guò)E、F兩點(diǎn)的直線解析式,以及A、B兩點(diǎn)的直線解析式.分別令y=12,求解x.
解:(1)由圖象可知小明到達(dá)離家最遠(yuǎn)的地方需3小時(shí);
(2)設(shè)直線CD的解析式為y=k1x+b1,由C(2,15)、D(3,30),
代入得:y=15x﹣15,(2≤x≤3)
當(dāng)x=2.5時(shí),y=22.5(千米)答:出發(fā)兩個(gè)半小時(shí),小明離家22.5千米;
(3)設(shè)過(guò)E、F兩點(diǎn)的直線解析式為y=k2x+b2,
由E(4,30)、F(6,0),代入得y=﹣15x+90,(4≤x≤6)
過(guò)A、B兩點(diǎn)的直線解析式為y=k3x,∵B(1,15)∴y=15x(0≤x≤1)
分別令y=12,得x=(小時(shí)),x=(小時(shí))
答:小明出發(fā)小時(shí)或小時(shí)距家12千米.
故答案為:3;22.5;小時(shí)或小時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】人們?cè)陂L(zhǎng)期的數(shù)學(xué)實(shí)踐中總結(jié)了許多解決數(shù)學(xué)問(wèn)題的方法,形成了許多光輝的數(shù)學(xué)想法,其中轉(zhuǎn)化思想是中學(xué)教學(xué)中最活躍,最實(shí)用,也是最重要的數(shù)學(xué)思想,例如將不規(guī)則圖形轉(zhuǎn)化為規(guī)則圖形就是研究圖形問(wèn)題比較常用的一種方法。
問(wèn)題提出:求邊長(zhǎng)分別為的三角形面積。
問(wèn)題解決:在解答這個(gè)問(wèn)題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫出邊長(zhǎng)分別為的格點(diǎn)三角形△ABC(如圖①),AB=是直角邊為1和2的直角三角形斜邊,BC=是直角邊分別為1和3的直角三角形的斜邊,AC=是直角邊分別為2和3 的直角三角形斜邊,用一個(gè)大長(zhǎng)方形的面積減去三個(gè)直角三角形的面積,這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積。
(1)請(qǐng)直接寫出圖①中△ABC的面積為_______________ 。
(2)類比遷移:求邊長(zhǎng)分別為的三角形面積(請(qǐng)利用圖②的正方形網(wǎng)格畫出相應(yīng)的△ABC,并求出它的面積)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),∠AOB=45°,點(diǎn)P、Q分別是邊OA,OB上的兩點(diǎn),且OP=2cm.將∠O沿PQ折疊,點(diǎn)O落在平面內(nèi)點(diǎn)C處.
(1)①當(dāng)PC∥QB時(shí),OQ= ;
②當(dāng)PC⊥QB時(shí),求OQ的長(zhǎng).
(2)當(dāng)折疊后重疊部分為等腰三角形時(shí),求OQ的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一坐標(biāo)系中,一次函數(shù)y=﹣mx+n2與二次函數(shù)y=x2+m的圖象可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y-2與x+1成正比例函數(shù)關(guān)系,且x=-2時(shí),y=6.
(1)寫出y與x之間的函數(shù)解析式;
(2)求當(dāng)x=-3時(shí),y的值;
(3)求當(dāng)y=4時(shí),x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中, , 兩點(diǎn)的坐標(biāo)分別為, ,連接,若以點(diǎn), , 為頂點(diǎn)的三角形是等腰直角三角形,則點(diǎn)坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】求符合下列條件的拋物線y=ax2-1的函數(shù)關(guān)系式:
(1)通過(guò)點(diǎn)(-3,2);
(2)與y=x2的開(kāi)口大小相同,方向相反;
(3)當(dāng)x的值由0增加到2時(shí),函數(shù)值減少4.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線相交于點(diǎn)O,∠CAB的平分線分別交BD、BC于E、F,作BH⊥AF于點(diǎn)H,分別交AC、CD于點(diǎn)G、P,連結(jié)GE、GF.
(1)求證:△OAE≌△OBG.
(2)試問(wèn):四邊形BFGE是否為菱形?若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x、y的方程組 .
(1)當(dāng)a滿足22a+3﹣22a+1=96時(shí),求方程組的解;
(2)當(dāng)程組的解滿足x+y=16時(shí),求a的值;
(3)試說(shuō)明:不論a取什么實(shí)數(shù),x的值始終為正數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com