精英家教網 > 初中數學 > 題目詳情

【題目】如圖,將邊長為3的正方形置于平面直角坐標系第一象限,使邊落在軸的正半軸上,直線經過點且與軸交于點

1)求點坐標;

2)求的面積;

3)若直線軸交于點,在軸上是否存在點,使得是直角三角形?若存在,請直接寫出點的坐標;若不存在,請說明理由.

【答案】1;(2;(3)存在,,,,.

【解析】

1)由正方形的性質可知點C的縱坐標為3,把y=3代入即可求出點C的坐標;

2)先求出點E的坐標,再根據三角形的面積公式求解即可;

3)分四種情況求解即可:①當FCP1=90°時,CFP2=90°時,③當CP3F=90°時,④當CP4F=90°時.

1)∵正方形的邊長為3,

AD=AB=3,

y=3時,,

x=4

;

2)把代入,,

,,

3)當x=3時,,

,,

CE=,CF=

EF=CE=

①當FCP1=90°時,設P1(x,0),

CP12=BC2+BP12=EP1-CE2

9+(x-4)2=(x-2)2-13,

解得

x=,

;

CFP2=90°時,

與①同理可求;

③當CP3F=90°時,

EF=CE=,

EP3=EF=CE=

OP3=2+

;

④當CP4F=90°時,

與③同理可求

綜上可知,,,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠ABC90°,∠ACB30°,AB2cm,EF分別是AB、AC的中點,動點P從點E出發(fā),沿EF方向勻速運動,速度為1cm/s,同時動點Q從點B出發(fā),沿BF方向勻速運動,速度為2cm/s,連接PQ,設運動時間為ts0t1),則當t___時,PQF為等腰三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】太倉港區(qū)道路綠化工程工地有大量貨物需要運輸,某車隊有載重量為8噸和10噸的卡車共15輛,所有車輛運輸一次能運輸128噸貨物.

(1)求該車隊載重量為8噸、10噸的卡車各有多少輛?

(2)隨著工程的擴大,車隊需要一次運輸貨物170噸以上,為了完成任務,車隊準備增購這兩種卡車共5輛(兩種車都購買),請寫出所有可能的購車方案.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于的一元二次方程有兩個實數根

1)求實數的取值范圍;

2)當時,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在行駛完某段全程600千米的高速公路時,李師傅對張師傅說:“你的車速太快了,平均每小時比我多跑20千米,比我少用1.5小時就跑完了全程.”

1)若這段高速公路全程限速120千米/小時,兩人全程均勻速行駛.那么張師傅超速了嗎?請說明理由;

2)張師傅所行駛的車內油箱余油量(升)與行駛時間(時)的函數關系如圖所示,則行駛完這段高速公路,他至少需要多少升油?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知直線ABCD相交于點O,在∠COB的內部作射線OE.

1)若∠AOC=36°COE=90°,求∠BOE的度數;

2)若∠COEEOBBOD=432,求∠AOE的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“五一”期間,小明一家乘坐高鐵前往某市旅游,計劃第二天租用新能源汽車自駕出游。

根據以上信息,解答下列問題:
(1)設租車時間為 小時,租用甲公司的車所需費用為 元,租用乙公司的車所需費用為 元,分別求出 , 關于 的函數表達式;
(2)請你幫助小明計算并選擇哪個出游方案合算。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“低碳環(huán)保,綠色出行”的理念得到廣大群眾的接受,越來越多的人再次選擇自行車作為出行工具,小軍和爸爸同時從家騎自行車去圖書館,爸爸先以150米/分的速度騎行一段時間,休息了5分鐘,再以m米/分的速度到達圖書館,小軍始終以同一速度騎行,兩人行駛的路程y(米)與時間x(分鐘)的關系如圖,請結合圖象,解答下列問題:
(1)a= , b= , m= ;
(2)若小軍的速度是120米/分,求小軍在途中與爸爸第二次相遇時,距圖書館的距離;
(3)在(2)的條件下,爸爸自第二次出發(fā)至到達圖書館前,何時與小軍相距100米?
(4)若小軍的行駛速度是v米/分,且在途中與爸爸恰好相遇兩次(不包括家、圖書館兩地),請直接寫出v的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若兩條拋物線的頂點相同,則稱它們?yōu)椤坝押脪佄锞”,拋物線C1:y1=﹣2x2+4x+2與C2:u2=﹣x2+mx+n為“友好拋物線”.

(1)求拋物線C2的解析式.
(2)點A是拋物線C2上在第一象限的動點,過A作AQ⊥x軸,Q為垂足,求AQ+OQ的最大值.
(3)設拋物線C2的頂點為C,點B的坐標為(﹣1,4),問在C2的對稱軸上是否存在點M,使線段MB繞點M逆時針旋轉90°得到線段MB′,且點B′恰好落在拋物線C2上?若存在求出點M的坐標,不存在說明理由.

查看答案和解析>>

同步練習冊答案