【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC,AC于點D,E,連結(jié)EB,交OD于點F.
(1)求證:OD⊥BE;
(2)若DE=,AB=10,求AE的長;
(3)若△CDE的面積是△OBF面積的,求的值.
【答案】(1)見解析;(2)8;(3)
【解析】
(1)連接AD.根據(jù)直徑所對的圓周角是直角、等腰三角形的性質(zhì)以及平行線的性質(zhì)即可證明;
(2)設(shè)AE=x.根據(jù)圓周角定理的推論和勾股定理進行求解;
(3)設(shè)S△CDE=5k,S△OBF=6k,求得S△CDE=S△BDE=5k,根據(jù)相似三角形的性質(zhì)得到,求得S△ABE=4S△OBF,于是得到S△CAB=S△CDE+S△BDE+S△ABE=34k,再由相似三角形的性質(zhì)即可得到結(jié)論.
(1)連接AD,
∵AB是⊙O直徑,
∴∠AEB=∠ADB=90°,
∵AB=AC,
∴,
∴OD⊥BE;
(2)∵∠AEB=90°,
∴∠BEC=90°,
∵BD=CD,
∴BC=2DE=,
∵四邊形ABDE內(nèi)接于⊙O,
∴∠BAC+∠BDE=180°,
∵∠CDE+∠BDE=180°,
∴∠CDE=∠BAC,
∵∠C=∠C,
∴△CDE∽△CAB,
∴,即,
∴CE=2,
∴AE=AC﹣CE=AB﹣CE=8;
(3)∵,
∴設(shè)S△CDE=5k,S△OBF=6k,
∵BD=CD,
∴S△CDE=S△BDE=5k,
∵BD=CD,AO=BO,
∴OD∥AC,
∵△OBF∽△ABE,
∴,
∴S△ABE=4S△OBF,
∴S△ABE=4S△OBF=24k,
∴S△CAB=S△CDE+S△BDE+S△ABE=34k,
∵△CDE∽△CAB,
∴,
∴,
∵BC=2CD,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系中,二次函數(shù)的圖象交x軸于點A,B,交y軸于點C,已知A的橫坐標為.
(1)求B點的橫坐標和直線的解析式;
(2)二次函數(shù)的圖象有一點D,把點D向左平移m()個單位,將與該二次函數(shù)圖象上的另一點重合,將向上移動5個單位后,恰好落在直線上,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若平面直角坐標系內(nèi)的點M滿足橫、縱坐標都為整數(shù),則把點M叫做“整點”.例如:P(1,0)、Q(2,﹣2)都是“整點”.拋物線y=mx2﹣4mx+4m﹣2(m>0)與x軸交于點A、B兩點,若該拋物線在A、B之間的部分與線段AB所圍成的區(qū)域(包括邊界)恰有七個整點,則m的取值范圍是( 。
A. ≤m<1B. <m≤1C. 1<m≤2D. 1<m<2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在Rt△ABC中,∠B=90°,∠ACB=30°,點D為BC邊上一動點,以AD為邊,在AD的右側(cè)作等邊三角形ADE.
(1)當AD平分∠BAC時,如圖1,四邊形ADCE是 形;
(2)過E作EF⊥AC于F,如圖2,求證:F為AC的中點;
(3)若AB=2,
①當D為BC的中點時,過點E作EG⊥BC于G,如圖3,求EG的長;
②點D從B點運動到C點,則點E所經(jīng)過路徑長為 .(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,AB=20,連接BD,點P是射線BC上一點(不與點B重合),AP與對角線BD交于點E,連接EC.
(1)求證:AE=CE;
(2)若sin∠ABD=,當點P在線段BC上時,若BP=8,求△PEC的面積;
(3)若∠ABC=45°,當點P在線段BC的延長線上時,請求出△PEC是等腰三角形時BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級隨機抽查了若干同學(xué),請他們分別記錄自己家中一周內(nèi)丟棄的塑料袋的數(shù)量(單位:個),將收集到的數(shù)據(jù)繪制成如圖所示的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中所給信息解答下列各題:
(1)這次調(diào)查的人數(shù)是多少?
(2)將條形統(tǒng)計圖補充完整.
(3)該校七年級共有650人,估計這周全體七年級學(xué)生家中丟棄的塑料袋的數(shù)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應(yīng)值如表:
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列結(jié)論錯誤的是( 。
A.ac<0
B.當x>1時,y的值隨x的增大而減小
C.3是方程ax2+(b﹣1)x+c=0的一個根
D.當﹣1<x<3時,ax2+(b﹣1)x+c>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.
(1)求證:四邊形AECD是菱形;
(2)若點E是AB的中點,試判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD=4,∠C=90°,點B在線段CD上,,沿AB所在的直線折疊△ACB得到△AC′B,若△DC′B是以BC'為腰的等腰三角形,則線段CB的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com