【題目】一般情況下,學生注意力上課后逐漸增強,中間有段時間處于較理想的穩(wěn)定狀態(tài),隨后開始分散.實驗結(jié)果表明,學生注意力指數(shù)y隨時間x(min)的變化規(guī)律如圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):
(1)上課后第5min與第30min相比較,何時學生注意力更集中?
(2)某道難題需連續(xù)講19min,為保證效果,學生注意力指數(shù)不宜低于36,老師能否在所需要求下講完這道題?

【答案】
(1)解:設(shè)線段AB所在的直線的解析式為y1=k1x+20,

把B(10,40)代入得,k1=2,

∴y1=2x+20.

設(shè)C、D所在雙曲線的解析式為y2= ,

把C(25,40)代入得,k2=1000,

∴y2= 當x1=5時,y1=2×5+20=30,

當x2=30時,y2= = ,

∴y1<y2

∴第30分鐘注意力更集中


(2)解:令y1=36,

∴36=2x+20,

∴x1=8

令y2=36,

∴36=

∴x2= ≈27.8,

∵27.8﹣8=19.8>19,

∴經(jīng)過適當安排,老師能在學生注意力達到所需的狀態(tài)下講解完這道題目


【解析】(1)先用代定系數(shù)法分別求出AB和CD的函數(shù)表達式,再分別求第五分鐘和第三十分鐘的注意力指數(shù),最后比較判斷;(2)分別求出注意力指數(shù)為36時的兩個時間,再將兩時間之差和19比較,大于19則能講完,否則不能.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將斜邊長為4的直角三角板放在直角坐標系xOy中,兩條直角邊分別與坐標軸重合,P為斜邊的中點.現(xiàn)將此三角板繞點O順時針旋轉(zhuǎn)120°后點P的對應(yīng)點的坐標是( )

A.( ,1)
B.(1,﹣
C.(2 ,﹣2)
D.(2,﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠CAB=30°,AB=10,點D在線段AB上,AD=2.點P,Q以相同的速度從D點同時出發(fā),點P沿DB方向運動,點Q沿DA方向到點A后立刻以原速返回向點B運動.以PQ為直徑構(gòu)造⊙O,過點P作⊙O的切線交折線AC﹣CB于點E,將線段EP繞點E順時針旋轉(zhuǎn)60°得到EF,過F作FG⊥EP于G,當P運動到點B時,Q也停止運動,設(shè)DP=m.
(1)當2<m≤8時,AP=,AQ=.(用m的代數(shù)式表示)
(2)當線段FG長度達到最大時,求m的值;
(3)在點P,Q整個運動過程中, ①當m為何值時,⊙O與△ABC的一邊相切?
②直接寫出點F所經(jīng)過的路徑長是.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,第一次將OAB變換成△OA1B1,第二次將△OA1B1變換成△OA2B2,第三次將OA2B2變換成△OA3B3;已知變換過程中各點坐標分別為A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).

(1)觀察每次變換前后的三角形有何變化,找出規(guī)律,按此規(guī)律再將△OA3B3變換成△OA4B4,則A4的坐標為   ,B4的坐標為   

(2)按以上規(guī)律將OAB進行n次變換得到△OAnBn,則An的坐標為   ,Bn的坐標為   

(3)△OAnBn的面積為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的口袋中裝有紅、白兩種顏色的小球(除顏色外其余都相同),其中紅球3個,白球1個.
(1)求任意摸出一球是白球的概率;
(2)甲同學先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用畫樹狀圖或列表的方法求兩次摸出都是紅球的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AD的延長線與BC的延長線相交于點E,DC=DE.
(1)求證:∠A=∠AEB;
(2)如果DC⊥OE,求證:△ABE是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形紙片ABCD置于直角坐標系中,點A(4,0),點B(0,3),點D(異于點B、C)為邊BC上動點,過點O、D折疊紙片,得點B′和折痕OD.過點D再次折疊紙片,使點C落在直線DB′上,得點C′和折痕DE,連接OE,設(shè)BD=t.

(1)當t=1時,求點E的坐標;
(2)設(shè)S四邊形OECB=s,用含t的式子表示s(要求寫出t的取值范圍);
(3)當OE取最小值時,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AC=6,BC=8,AD平分∠BAC,則點B到AD的距離是(
A.3
B.4
C.2
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年以來,我國持續(xù)大面積的霧霾天氣讓環(huán)保和健康問題成為焦點.為了調(diào)查學生對霧霾天氣知識的了解程度,某校在學生中做了一次抽樣調(diào)查,調(diào)查結(jié)果共分為四個等級:A.非常了解;B.比較了解;C.基本了解;D.不了解.根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了不完整的三種統(tǒng)計圖表. 對霧霾了解程度的統(tǒng)計表:

對霧霾的了解程度

百分比

A.非常了解

5%

B.比較了解

m

C.基本了解

45%

D.不了解

n

請結(jié)合統(tǒng)計圖表,回答下列問題.
對霧霾天氣了解程度的條形統(tǒng)計圖

對霧霾天氣了解程度的扇形統(tǒng)計圖

(1)本次參與調(diào)查的學生共有人,m= , n=
(2)圖2所示的扇形統(tǒng)計圖中D部分扇形所對應(yīng)的圓心角是度;
(3)請補全圖1示數(shù)的條形統(tǒng)計圖
(4)根據(jù)調(diào)查結(jié)果,學校準備開展關(guān)于霧霾知識競賽,某班要從“非常了解”態(tài)度的小明和小剛中選一人參加,現(xiàn)設(shè)計了如下游戲來確定,具體規(guī)則是:把四個完全相同的乒乓球標上數(shù)字1,2,3,4,然后放到一個不透明的袋中,一個人先從袋中隨機摸出一個球,另一人再從剩下的三個球中隨機摸出一個球.若摸出的兩個球上的數(shù)字和為奇數(shù),則小明去;否則小剛?cè)ィ堄脴錉顖D或列表法說明這個游戲規(guī)則是否公平.

查看答案和解析>>

同步練習冊答案