【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,∠CAB的平分線交⊙O于點(diǎn)D,過點(diǎn)D作AC的垂線交AC的延長線于點(diǎn)E,連接BC交AD于點(diǎn)F.
(1)猜想ED與⊙O的位置關(guān)系,并證明你的猜想;
(2)若AB=6,AD=5,求AF的長.
【答案】
(1)解:ED與⊙O的位置關(guān)系是相切.理由如下:
連接OD,
∵∠CAB的平分線交⊙O于點(diǎn)D,
∴ = ,
∴OD⊥BC,
∵AB是⊙O的直徑,
∴∠ACB=90°,
即BC⊥AC,
∵DE⊥AC,
∴DE∥BC,
∴OD⊥DE,
∴ED與⊙O的位置關(guān)系是相切
(2)解:連接BD.
∵AB是直徑,
∴∠ADB=90°,
在直角△ABD中,BD= = = ,
∵AB為直徑,
∴∠ACB=∠ADB=90°,
又∵∠AFC=∠BFD,
∴∠FBD=∠CAD=∠BAD
∴△FBD∽△BAD,
∴ =
∴FD=
∴AF=AD﹣FD=5﹣ = .
【解析】(1)連接OD,根據(jù)∠CAB的平分線交⊙O于點(diǎn)D,則 = ,依據(jù)垂徑定理可以得到:OD⊥BC,然后根據(jù)直徑的定義,可以得到OD∥AE,從而證得:DE⊥OD,則DE是圓的切線;(2)首先證明△FBD∽△BAD,依據(jù)相似三角形的對應(yīng)邊的比相等,即可求DF的長,繼而求得答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:E 是∠AOB 的平分線上一點(diǎn),EC⊥OB,ED⊥OA,C、D是垂足,連接 CD,且交 OE 于點(diǎn)F.
(1)求證:OD=OC;
(2)求證:OE 是 CD 的垂直平分線;
(3)若∠AOB=60°,請你探究 OE,EF 之間有什么數(shù)量關(guān)系?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為發(fā)展校園足球運(yùn)動,某縣城區(qū)四校決定聯(lián)合購買一批足球運(yùn)動裝備,市場調(diào)查發(fā)現(xiàn):甲、乙兩商場以同樣的價格出售同種品牌的足球隊(duì)服和足球,已知每套隊(duì)服比每個足球多50元,兩套隊(duì)服與三個足球的費(fèi)用相等,經(jīng)洽談,甲商場優(yōu)惠方案是:每購買十套隊(duì)服,送一個足球;乙商場優(yōu)惠方案是:若購買隊(duì)服超過80套,則購買足球打八折.
(1)求每套隊(duì)服和每個足球的價格是多少?
(2)若城區(qū)四校聯(lián)合購買100套隊(duì)服和a個足球,請用含a的式子分別表示出到甲商場和乙商場購買裝備所花的費(fèi)用;
(3)假如你是本次購買任務(wù)的負(fù)責(zé)人,你認(rèn)為到哪家商場購買比較合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(7分)如圖所示,O是直線AB上一點(diǎn),∠AOC=∠BOC,OC是∠AOD的平分線.
(1)求∠COD的度數(shù).
(2)判斷OD與AB的位置關(guān)系,并說出理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 中,AB=AC,∠BAC 和∠ACB 的平分線相交于點(diǎn)D,∠ADC=125°,那么∠CAB 的大小是_________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD相交于點(diǎn)O,OE是∠COB的平分線,∠FOE=90°,若∠AOD=70°.
(1)求∠BOE的度數(shù);
(2)OF是∠AOC的平分線嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點(diǎn)D,點(diǎn)P是BA延長線上一點(diǎn),點(diǎn)O是線段AD上一點(diǎn),OP=OC.
(1)求∠APO+∠DCO的度數(shù);
(2)求證:點(diǎn)P在OC的垂直平分線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】概念學(xué)習(xí)
規(guī)定:如果一個三角形的三個角分別等于另一個三角形的三個角,那么稱這兩個三角形互為“等角三角形”.
從三角形不是等腰三角形一個頂點(diǎn)引出一條射線與對邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原來三角形是“等角三角形”,我們把這條線段叫做這個三角形的“等角分割線”.
理解概念
如圖1,在中,,,請寫出圖中兩對“等角三角形”概念應(yīng)用
如圖2,在中,CD為角平分線,,.
求證:CD為的等角分割線.
在中,,CD是的等角分割線,直接寫出的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com