(2012•黑河)如圖,已知AC=BD,要使△ABC≌△DCB,則只需添加一個適當?shù)臈l件是
此題答案不唯一:如AB=DC或∠ACB=∠DBC
此題答案不唯一:如AB=DC或∠ACB=∠DBC
.(填一個即可)
分析:由AC=BD,BC是公共邊,即可得要證△ABC≌△DCB,可利用SSS或SAS證得.
解答:解:∵AC=BD,BC是公共邊,
∴要使△ABC≌△DCB,需添加:①AB=DC(SSS),②∠ACB=∠DBC(SAS).
故答案為:此題答案不唯一:如AB=DC或∠ACB=∠DBC.
點評:此題考查了全等三角形的判定.此題屬于開放題,注意判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•黑河)如圖,在平面直角坐標系中有一邊長為1的正方形OABC,邊OA、OC分別在x軸、y軸上,如果以對角線OB為邊作第二個正方形OBB1C1,再以對角線OB1為邊作第三個正方形OB1B2C2,照此規(guī)律作下去,則點B2012的坐標為
(-21006,-21006
(-21006,-21006

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•黑河)如圖所示,沿DE折疊長方形ABCD的一邊,使點C落在AB邊上的點F處,若AD=8,且△AFD的面積為60,則△DEC的面積為
289
8
289
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•黑河)如圖,拋物線y=-
1
2
x2+bx+c與x軸交于A、B兩點,與y軸交于點C,且OA=2,OC=3.
(1)求拋物線的解析式.
(2)若點D(2,2)是拋物線上一點,那么在拋物線的對稱軸上,是否存在一點P,使得△BDP的周長最。咳舸嬖,請求出點P的坐標;若不存在,請說明理由.
注:二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸是直線x=-
b
2a

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•黑河)如圖,在平面直角坐標系中,已知Rt△AOB的兩條直角邊OA、OB分別在y軸和x軸上,并且OA、OB的長分別是方程x2-7x+12=0的兩根(OA<OB),動點P從點A開始在線段AO上以每秒1個單位長度的速度向點0運動;同時,動點Q從點B開始在線段BA上以每秒2個單位長度的速度向點A運動,設點P、Q運動的時間為t秒.
(1)求A、B兩點的坐標.
(2)求當t為何值時,△APQ與△AOB相似,并直接寫出此時點Q的坐標.
(3)當t=2時,在坐標平面內(nèi),是否存在點M,使以A、P、Q、M為頂點的四邊形是平行四邊形?若存在,請直接寫出M點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案