直角坐標系中,△OAB的頂點O(0,0),B(-3,0),且∠AOB=45°,將△OAB繞點O精英家教網按順時針方向旋轉90°得到△OA'B'.
(1)畫出△OA'B'.
(2)點B'坐標為
 

(3)求BB'的長.
分析:(1)根據點的坐標標出旋轉后的對應點,連接即可;
(2)根據旋轉的旋轉即可求出答案;
(3)由已知和作圖得到B、B′的坐標,根據勾股定理求出即可.
解答:精英家教網解:(1)如圖所示:△OA′B′.

(2)解點B′的坐標是(0,3),
故答案為:(0,3).

(3)解:OB=3,OB′=3,∠BOB′=90°,
由勾股定理得:BB′=
32+32
=3
2
,
答:BB′的長是3
2
點評:本題主要考查對作圖-與旋轉變換,坐標與圖形變換-對稱,勾股定理等知識點的理解和掌握,能正確畫圖和計算是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,把矩形OABC放置在直角坐標系中,OA=6,OC=8,若將矩形折疊,使點B與O重合,得精英家教網到折痕EF.
(1)可以通過
 
辦法,使四邊形AEFO變到四邊形BEFC的位置(填“平移”、“旋轉”或“翻轉”);
(2)寫出點E在坐標系中的位置即點E的坐標
 
;
(3)折痕EF的長為
 
;
(4)若直線l把矩形OABC的面積分成相等的兩部分,則直線l必經過點
 
,寫出經過這點的任意一條直線的函數(shù)關系式
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,OA=
2
(點O為原點),點P是x軸上的點,△OAP是等腰三角形,寫出所有符合條件的點P的坐標:
 

精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,邊長為4的正方形OABC放置在平面直角坐標系中,OA在x軸正半軸上,OC在y軸正半軸上,當直線y=-x+b中的系數(shù)b從0開始逐漸變大時,直線在正方形上掃過的面積記為S.則S關于b的函數(shù)圖象是( 。
A、精英家教網B、精英家教網C、精英家教網D、精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

把矩形OABC放在平面直角坐標系中,OA,OC分別放在x軸、y軸的正半軸上,O為坐標原點,已知OA=4,OC=2,沿直線OB將△OAB翻折,點A落在該平面直角坐標系中的D處,則經過D點的雙曲線的解析式為
y=
192
25x
y=
192
25x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,邊長為2的正方形OABC放置在平面直角坐標系中,OA在x軸正半軸上,OC在y軸正半軸上,當直線y=kx的系數(shù)k從0開始逐漸變大時,直線在正方形上掃過的面積為記為S,則S關于k的函數(shù)圖象是( 。

查看答案和解析>>

同步練習冊答案