【題目】已知長(zhǎng)方體的長(zhǎng)為1cm、寬為1cm、高為4cm(其中AC=1cm,BC=1cm,CG=4cm).一只螞蟻如果沿長(zhǎng)方體的表面從A點(diǎn)爬到F點(diǎn),最短的路程是多少?
【答案】最短路徑應(yīng)為㎝.
【解析】
把長(zhǎng)方體展開(kāi),根據(jù)利用兩點(diǎn)之間線(xiàn)段最短解答即可.
根據(jù)題意,如下圖所示,最短路徑有以下三種情況:
沿AE、EG、GF、FB剪開(kāi),得圖(1)AF2=AB2+BF2=(1+1)2+42=20cm,
沿AC、CG、GF、FH、HE、EA剪開(kāi),得圖(2)AF2=AC2+FC2=12+(4+1)2=26cm,
沿AD、DH、HF、FG、GE、EA剪開(kāi),得圖(3)AF2=AD2+FD2=12+(4+1)2=26cm,
綜上所述,最短路徑應(yīng)為(1)所示,
所以AF2=20cm,
即AF=cm,
答:最短路徑應(yīng)為cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖甲,四邊形OABC的邊OA、OC分別在x軸、y軸的正半軸上,頂點(diǎn)在B點(diǎn)的拋物線(xiàn)交x軸于點(diǎn)A、D,交y軸于點(diǎn)E,連接AB、AE、BE.已知tan∠CBE= ,A(3,0),D(﹣1,0),E(0,3).
(1)求拋物線(xiàn)的解析式及頂點(diǎn)B的坐標(biāo);
(2)求證:CB是△ABE外接圓的切線(xiàn);
(3)試探究坐標(biāo)軸上是否存在一點(diǎn)P,使以D、E、P為頂點(diǎn)的三角形與△ABE相似,若存在,直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)設(shè)△AOE沿x軸正方向平移t個(gè)單位長(zhǎng)度(0<t≤3)時(shí),△AOE與△ABE重疊部分的面積為s,求s與t之間的函數(shù)關(guān)系式,并指出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果兩個(gè)三角形的兩條邊和其中一邊上的高對(duì)應(yīng)相等,那么這兩個(gè)三角形的第三邊所對(duì)的角的關(guān)系是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【背景】國(guó)家為扶持軟件企業(yè)的發(fā)展,對(duì)企業(yè)實(shí)行月補(bǔ)貼,以提高企業(yè)的凈利潤(rùn).
【問(wèn)題】國(guó)內(nèi)某軟件企業(yè)2014 年12月份并未如期收到700萬(wàn)元的月補(bǔ)貼,這樣導(dǎo)致2014 年的凈利潤(rùn)增長(zhǎng)只有55%.而若補(bǔ)貼及時(shí)到位,則2014 年的凈利潤(rùn)增長(zhǎng)將達(dá)到60%.
(1)求2013年該企業(yè)凈利潤(rùn)是多少萬(wàn)元?
(2)又據(jù)統(tǒng)計(jì),2014年12月該企業(yè)不含月補(bǔ)貼的月凈利潤(rùn)為2100萬(wàn)元,2015年1月及2月不含月補(bǔ)貼的月凈利潤(rùn)比上月增加的百分?jǐn)?shù)分別是m和 2m,這兩個(gè)月的月補(bǔ)貼相等,且都在2014年12月基礎(chǔ)上增加了2m.據(jù)推算,若以后各月不含月補(bǔ)貼的月凈利潤(rùn)和月補(bǔ)貼均穩(wěn)定在2月份的水平不變,則 2015年該企業(yè)凈利潤(rùn)將達(dá)到2013年的3倍,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是正方形ABCD的邊DC上一點(diǎn),把△ADE順時(shí)針旋轉(zhuǎn)△ABF的位置.
(1)旋轉(zhuǎn)中心是點(diǎn) , 旋轉(zhuǎn)角度是度;
(2)若連結(jié)EF,則△AEF是三角形;并證明;
(3)若四邊形AECF的面積為25,DE=2,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=45,∠AOB內(nèi)有一定點(diǎn)P,且OP=10.在OA上有一動(dòng)點(diǎn)Q,OB上有一動(dòng)點(diǎn)R.若ΔPQR周長(zhǎng)最小,則最小周長(zhǎng)是()
A. 10 B. C. 20 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△OBA,∠ABO=30°,OA=2,兩條直角邊重疊在互相的垂直的兩條直線(xiàn)上,線(xiàn)段PQ的端點(diǎn)P從點(diǎn)O出發(fā),沿△OBA的邊按O→B→A→O運(yùn)動(dòng)一周,同時(shí)另一端點(diǎn)Q隨之在直線(xiàn)AO上運(yùn)動(dòng),如果PQ=,那么當(dāng)點(diǎn)P運(yùn)動(dòng)一周時(shí),點(diǎn)Q運(yùn)動(dòng)的總路程為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△ABC的邊長(zhǎng)為3,F(xiàn)為BC邊上的動(dòng)點(diǎn),F(xiàn)D⊥AB于D,F(xiàn)E⊥AC于E,則DE的長(zhǎng)為( )
A.隨F點(diǎn)運(yùn)動(dòng),其值不變
B.隨F點(diǎn)運(yùn)動(dòng)而變化,最大值為
C.隨F點(diǎn)運(yùn)動(dòng)而變化,最小值為
D.隨F點(diǎn)運(yùn)動(dòng)而變化,最小值為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明同學(xué)在學(xué)習(xí)了全等三角形的相關(guān)知識(shí)后發(fā)現(xiàn),只用兩把完全相同的長(zhǎng)方形直尺就可以作出一個(gè)角的平分線(xiàn).如圖:一把直尺壓住射線(xiàn)OB,另一把直尺壓住射線(xiàn)OA并且與第一把直尺交于點(diǎn)P,小明說(shuō):“射線(xiàn)OP就是∠BOA的角平分線(xiàn).”他這樣做的依據(jù)是( 。
A. 角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線(xiàn)上
B. 角平分線(xiàn)上的點(diǎn)到這個(gè)角兩邊的距離相等
C. 三角形三條角平分線(xiàn)的交點(diǎn)到三條邊的距離相等
D. 三角形三條垂直平分線(xiàn)的交點(diǎn)到三個(gè)定點(diǎn)的距離相等
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com