【題目】已知:內(nèi)接于,過點作的切線,交的延長線于點,連接.
(1)如圖1,求證:;
(2)如圖2,過點作于點,連接,交于點,,求證:;
(3)如圖3,在(2)的條件下,點為上一點,過點的切線交的延長線于點,連接,交的延長線于點,連接,,點為上一點,連接,若,,,,求的長.
【答案】(1)詳見解析;(2)詳見解析;(3)
【解析】
(1)延長BO交于G,連接CG,根據(jù)切線的性質(zhì)可得可證∠DBC+∠CBG=90°,然后根據(jù)直徑所對的圓周角是直角可證∠CBG+∠G=90°,再根據(jù)圓的內(nèi)接四邊形的性質(zhì)可得∠DAB=∠G,從而證出結(jié)論;
(2)在MB上截取一點H,使AM=MH,連接DH,根據(jù)垂直平分線性質(zhì)可得DH=AD,再根據(jù)等邊對等角可得∠DHA=∠DAH,然后根據(jù)等邊對等角和三角形外角的性質(zhì)證出∠ABC=∠C,可得AB=AC,再根據(jù)垂直平分線的判定可得AO垂直平分BC,從而證出結(jié)論;
(3)延長CF交BD于M,延長BO交CQ于G,連接OE,證出tan∠BGE=tan∠ECF=2,然后利用AAS證出△CFN≌△BON,可設(shè)CF=BO=r,ON=FN=a,則OE=r,根據(jù)銳角三角函數(shù)和相似三角形即可證出四邊形OBPE為正方形,利用r和a表示出各線段,最后根據(jù),即可分別求出a和CF.
解:(1)延長BO交于G,連接CG
∵BD是的切線
∴∠OBD=90°
∴∠DBC+∠CBG=90°
∵BG為直徑
∴∠BCG=90°
∴∠CBG+∠G=90°
∴∠DBC=∠G
∵四邊形ABGC為的內(nèi)接四邊形
∴∠DAB=∠G
∴∠DAB=∠DBC
(2)在MB上截取一點H,使AM=MH,連接DH
∴DM垂直平分AH
∴DH=AD
∴∠DHA=∠DAH
∵,
∴AD=BH
∴DH=BH
∴∠HDB=∠HBD
∴∠DHA=∠HDB+∠HBD=2∠HBD
由(1)知∠DAB=∠DBC
∴∠DHA=∠DAB=∠DBC
∴∠DBC =2∠HBD
∵∠DBC =∠HBD+∠ABC
∴∠HBD=∠ABC,∠DBC=2∠ABC
∴∠DAB=2∠ABC
∵∠DAB=∠ABC+∠C
∴∠ABC=∠C
∴AB=AC
∴點A在BC的垂直平分線上
∵點O也在BC的垂直平分線上
∴AO垂直平分BC
∴
(3)延長CF交BD于M,延長BO交CQ于G,連接OE,
∵
∴∠DMC=90°
∵∠OBD=90°
∴∠DMC=∠OBD
∴CF∥OB
∴∠BGE=∠ECF,∠CFN=∠BON,
∴tan∠BGE=tan∠ECF=2
由(2)知OA垂直平分BC
∴∠CNF=∠BNO=90°,BN=CN
∴△CFN≌△BON
∴CF=BO,ON=FN,設(shè)CF=BO=r,ON=FN=a,則OE=r
∵
∴OQ=2a
∵CF∥OB
∴△QGO∽△QCF
∴
即
∴OG=
過點O作OE′⊥BG,交PE于E′
∴OE′=OG·tan∠BGE=r=OE
∴點E′與點E重合
∴∠EOG=90°
∴∠BOE=90°
∵PB和PE是圓O的切線
∴∠OBP=∠OEP=∠BOE=90°,OB=OE=r
∴四邊形OBPE為正方形
∴∠BOE=90°,PE=OB=r
∴∠BCE=∠BOE==45°
∴△NQC為等腰直角三角形
∴NC=NQ=3a,
∴BC=2NC=6a
在Rt△CFN中,CF=
∵
∴PQ∥BC
∴∠PQE=∠BCG
∵PE∥BG
∴∠PEQ=∠BGC
∴△PQE∽△BCG
∴
即
解得:PQ=4a
∵,
∴4a+2a=
解得:a=
∴CF==10
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知BC是⊙O的直徑,點D是BC延長線上一點,AB=AD,AE是⊙O的弦,∠AEC=30°.
(1)求證:直線AD是⊙O的切線;
(2)若AE⊥BC,垂足為M,⊙O的半徑為4,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD中,AD∥BC,∠B=90°,AD=BC=20,AB=8,動點P從點B出發(fā),先以每秒2cm的速度沿B→A的方向運動,到達(dá)點A后再以每秒4cm的速度沿A→D的方向向終點D運動;動點Q從點B出發(fā)以每秒2cm的速度沿B→C的方向向終點C運動.其中一個動點到達(dá)終點時,另一個動點也隨之停止運動,設(shè)點P、Q同時出發(fā),運動時間為t秒.
(1)直接寫出BQ的長(用含t的代數(shù)式表示)
(2)求△BPQ的面積S(用含t的代數(shù)式表示)
(3)求當(dāng)四邊形APCQ為平行四邊形t的值
(4)若點E為BC中點,直接寫出當(dāng)△BEP為等腰三角形時t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017浙江省湖州市,第16題,4分)如圖,在平面直角坐標(biāo)系xOy中,已知直線y=kx(k>0)分別交反比例函數(shù)和在第一象限的圖象于點A,B,過點B作 BD⊥x軸于點D,交的圖象于點C,連結(jié)AC.若△ABC是等腰三角形,則k的值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】建華區(qū)對參加年中考的名初中畢業(yè)生進(jìn)行了一次視力抽樣調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分.請根據(jù)圖、表信息解答下列問題:
(1)在頻數(shù)分布表中,的值為 ,的值為 ,并將頻數(shù)分布直方圖補(bǔ)充完整;
(2)甲同學(xué)說:“我的視力情況是此次抽樣調(diào)查所得數(shù)據(jù)的中位數(shù)”,問甲同學(xué)的視力情況應(yīng)在什么范圍?
(3)若視力在以上(含)均屬正常,則視力正常的人數(shù)占被統(tǒng)計人數(shù)的百分比是 ,并根據(jù)上述信息估計全區(qū)初中畢業(yè)生中視力正常的學(xué)生有多少人?
視力 | 頻數(shù) | 頻率 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某旅行團(tuán)32人在景區(qū)A游玩,他們由成人、少年和兒童組成.已知兒童10人,成人比少年多12人.
(1)求該旅行團(tuán)中成人與少年分別是多少人?
(2)因時間充裕,該團(tuán)準(zhǔn)備讓成人和少年(至少各1名)帶領(lǐng)10名兒童去另一景區(qū)B游玩.景區(qū)B的門票價格為100元/張,成人全票,少年8折,兒童6折,一名成人可以免費攜帶一名兒童.
①若由成人8人和少年5人帶隊,則所需門票的總費用是多少元?
②若剩余經(jīng)費只有1200元可用于購票,在不超額的前提下,最多可以安排成人和少年共多少人帶隊?求所有滿足條件的方案,并指出哪種方案購票費用最少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A,B兩城相距600千米,甲、乙兩車同時從A城出發(fā)駛向B城,甲車到達(dá)B城后立即返回.如圖是它們離A城的距離y(千米)與行駛時間 x(小時)之間的函數(shù)圖象.
(1)求甲車行駛過程中y與x之間的函數(shù)解析式,并寫出自變量x的取值范圍;
(2)當(dāng)它們行駛了7小時時,兩車相遇,求乙車的速度及乙車行駛過程中y與x之間的函數(shù)解析式,并寫出自變量x的取值范圍;
(3)當(dāng)兩車相距100千米時,求甲車行駛的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】金佛山是巴蜀四大名山之一游客上金佛山有兩種方式:一種是從西坡上山,如圖,先從A沿登山步道走到點B,再沿索道乘坐纜車到點C;另一種是從北坡景區(qū)沿著盤山公路開車上山到點C.已知在點A處觀測點C,得仰角∠CAD=37°,且A、B的水平距離AE=1000米,索道BC的坡度i=1:,長度為2600米,CD⊥AD于點D,BF⊥CD于點F則BE的高度為(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°=0.75,=1.73)( 。
A.2436.8米B.2249.6米C.1036.8米D.1136.8米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com