【題目】已知a、b、c、d都是正實數(shù),且 < ,給出下列四個不等式: ① < ;② < ;③ ;④ <
其中不等式正確的是()
A.①③
B.①④
C.②④
D.②③
【答案】A
【解析】解:∵ < ,a、b、c、d都是正實數(shù), ∴ad<bc,
∴ac+ad<ac+bc,即a(c+d)<c(a+b),
∴ < ,所以①正確,②不正確;
∵ < ,a、b、c、d都是正實數(shù),
∴ad<bc,
∴bd+ad<bd+bc,即d(a+b)<b(d+c),
∴ < ,所以③正確,④不正確.
故選A.
【考點精析】解答此題的關(guān)鍵在于理解不等式的性質(zhì)的相關(guān)知識,掌握1:不等式的兩邊同時加上(或減去)同一個數(shù)(或式子),不等號的方向不變 .2:不等式的兩邊同時乘以(或除以)同一個 正數(shù) ,不等號的方向 不變 .3:不等式的兩邊同時乘以(或除以)同一個 負數(shù) ,的方向 改變.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△COD是△AOB繞點O順時針旋轉(zhuǎn)40°后得到的圖形,若點C恰好落在AB上,且∠AOD的度數(shù)為90°,則∠B的度數(shù)是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AB=DC,對角線AC、BD交于點O,AC⊥BD,E、F、G、H分別是AB、BC、CD、DA的中點.
(1)求證:四邊形EFGH是正方形;
(2)若AD=2,BC=4,求四邊形EFGH的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,
問題1:如圖1,P為AB邊上的一點,以PD,PC為邊作平行四邊形PCQD,請問對角線PQ,DC的長能否相等,為什么?
問題2:如圖2,若P為AB邊上一點,以PD,PC為邊作平行四邊形PCQD,請問對角線PQ的長是否存在最小值?如果存在,請求出最小值,如果不存在,請說明理由.
問題3:若P為AB邊上任意一點,延長PD到E,使DE=PD,再以PE,PC為邊作平行四邊形PCQE,請?zhí)骄繉蔷PQ的長是否也存在最小值?如果存在,請求出最小值,如果不存在,請說明理由.
問題4:如圖3,若P為DC邊上任意一點,延長PA到E,使AE=nPA(n為常數(shù)),以PE、PB為邊作平行四邊形PBQE,請?zhí)骄繉蔷PQ的長是否也存在最小值?如果存在,請求出最小值,如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的口袋里裝有白、紅、黑三種顏色的小球,其中白球2只,紅球1只,黑球1只,它們除了顏色之外沒有其它區(qū)別,從袋中隨機地摸出1只球,記錄下顏色后放回攪勻,再摸出第二只球并記錄顏色,求兩次都摸出白球的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D在△ABC的邊AC上,要判定△ADB與△ABC相似,添加一個條件,不正確的是( )
A.∠ABD=∠C
B.∠ADB=∠ABC
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,利用一面墻(墻的長度不超過45m),用80m長的籬笆圍一個矩形場地.
(1)怎樣圍才能使矩形場地的面積為750m2?
(2)能否使所圍矩形場地的面積為810m2 , 為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為加強中小學生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識競賽,為獎勵在競賽中表現(xiàn)優(yōu)異的班級,學校準備從體育用品商場一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),購買1個足球和1個籃球共需159元;足球單價是籃球單價的2倍少9元.
(1)求足球和籃球的單價各是多少元?
(2)根據(jù)學校實際情況,需一次性購買足球和籃球共20個,但要求購買足球和籃球的總費用不超過1550元,學校最多可以購買多少個足球?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com