【題目】把函數(shù)f(x)= cos2x﹣sin2x的圖象向右平移 個(gè)單位得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)在下列哪個(gè)區(qū)間是單調(diào)遞減的(
A.[﹣ ,0]
B.[﹣π,0]
C.[﹣ , ]
D.[0, ]

【答案】D
【解析】解:函數(shù)f(x)= cos2x﹣sin2x=2cos(2x+ ),向右平移 個(gè)單位得到2cos(2(x )=2cos2x=g(x), 由y=cosx的一個(gè)單調(diào)遞減區(qū)間為[0,π],
∴g(x)=2cos2x的一個(gè)單調(diào)遞減區(qū)間為[0, ],
故選D
【考點(diǎn)精析】利用函數(shù)y=Asin(ωx+φ)的圖象變換對(duì)題目進(jìn)行判斷即可得到答案,需要熟知圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為2cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在正方形的邊上沿A→B→C的方向運(yùn)動(dòng)到點(diǎn)C停止,設(shè)點(diǎn)P的運(yùn)動(dòng)路程為x(cm),在下列圖象中,能表示△ADP的面積y(cm2)關(guān)于x(cm)的函數(shù)關(guān)系的圖象是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=CC1=2,M是AB的中點(diǎn).
(1)求證:平面A1CM⊥平面ABB1A1;
(2)求點(diǎn)M到平面A1CB1的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直三棱柱ABC﹣A1B1C1中,底面是正三角形,三棱柱的高為 ,若P是△A1B1C1中心,且三棱柱的體積為 ,則PA與平面ABC所成的角大小是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交ABM,交ACN

1)若∠ABC=70°,則∠MNA的度數(shù)是__

2)連接NB,若AB=8cm,NBC的周長(zhǎng)是14cm

BC的長(zhǎng);

在直線MN上是否存在P,使由P、BC構(gòu)成的△PBC的周長(zhǎng)值最?若存在,標(biāo)出點(diǎn)P的位置并求△PBC的周長(zhǎng)最小值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1<0,an+1= ,數(shù)列{bn}滿足:bn=nan(n∈N*),設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,當(dāng)n=7時(shí)Sn有最小值,則a1的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為 ,直線l的參數(shù)方程為 (t為參數(shù)),直線l與曲線C1交于A,B兩點(diǎn). (Ⅰ)求|AB|的長(zhǎng)度;
(Ⅱ)若曲線C2的參數(shù)方程為 (α為參數(shù)),P為曲線C2上的任意一點(diǎn),求△PAB的面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若存在正常數(shù)a,b,使得x∈R有f(x+a)≤f(x)+b恒成立,則稱f(x)為“限增函數(shù)”.給出下列三個(gè)函數(shù):①f(x)=x2+x+1;② ;③f(x)=sin(x2),其中是“限增函數(shù)”的是(
A.①②③
B.②③
C.①③
D.③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在(0,+∞)上的單調(diào)函數(shù),且對(duì)任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3,則方程f(x)﹣f′(x)=2的解所在的區(qū)間是(
A.(0,
B.( ,1)
C.(1,2)
D.(2,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案