【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個頂點都在格點上,點A的坐標(biāo)為(2,2)請解答下列問題:

(1)畫出ABC關(guān)于y軸對稱的A1B1C1,并寫出A1的坐標(biāo).

(2)畫出ABC繞點B逆時針旋轉(zhuǎn)90°后得到的A2B2C2,并寫出A2的坐標(biāo).

(3)畫出A2B2C2關(guān)于原點O成中心對稱的A3B3C3,并寫出A3的坐標(biāo).

【答案】(1)作圖見解析;A1的坐標(biāo)為(-2,2);(2)作圖見解析;A2的坐標(biāo)為(4,0);(3)作圖見解析;A3的坐標(biāo)為(-4,0).

【解析】試題分析:根據(jù)題意畫出相應(yīng)的三角形,確定出所求點坐標(biāo)即可.

解:(1)畫出ABC關(guān)于y軸對稱的A1B1C1,如圖所示,此時A1的坐標(biāo)為(﹣2,2);

(2)畫出ABC繞點B逆時針旋轉(zhuǎn)90°后得到的A2B2C2,如圖所示,此時A2的坐標(biāo)為(4,0);

(3)畫出A2B2C2關(guān)于原點O成中心對稱的A3B3C3,如圖所示,此時A3的坐標(biāo)為(﹣4,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只不透明的袋子中裝有紅球2個和白球2個,這些球除顏色外其余都相同,小明從袋子中任意摸出一球,記下顏色后不放回,若小明再從剩余的球中任取一球,請你用列表法或樹狀圖的方法,求小明兩次都摸出紅球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AD⊥BC,CE⊥AB,垂足分別為D、EAD、CE交于點H,請你添加一個適當(dāng)?shù)臈l件:_____________,使△AEH≌△CEB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形.(厚度不計)

(1)在圖中畫出裁剪示意圖,用實線表示裁剪線,虛線表示折痕;并求長方體底面面積為12dm2時,裁掉的正方形邊長多大?

(2)若要求制作的長方體的底面長不大于底面寬的五倍,并將容器進行防銹處理,側(cè)面每平方分米的費用為0.5元,底面每平方分米的費用為2元,裁掉的正方形邊長多大時,總費用最低,最低為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a+b=-5,ab=-4,則a2-ab+b2的值是( 。

A. 37B. 33C. 29D. 21

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的有(

有且只有一條直線與已知直線平行;

過一點有且只有一條直線與已知直線平行

③過直線外一點有且只有一條直線與已知直線平行

平行于同一條直線的兩條直線平行

A. ①②B. ②④C. ③④D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的三個頂點分別是A8,3),B4,0),C4,3),ABC=α°.拋物線y=x2+bx+c經(jīng)過點C,且對稱軸為x=,并與y軸交于點G

1)求拋物線的解析式及點G的坐標(biāo);

2)將RtABC沿x軸向右平移m個單位,使B點移到點E,然后將三角形繞點E順時針旋轉(zhuǎn)α°得到DEF.若點F恰好落在拋物線上.①求m的值;

②連接CGx軸于點H,連接FG,過BBPFG,交CG于點P,求證:PH=GH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小昆和小明玩摸牌游戲,游戲規(guī)則如下:有3張背面完全相同,牌面標(biāo)有數(shù)字12、3的紙牌,將紙牌洗勻后背面朝上放在桌面上,隨機抽出一張,記下牌面數(shù)字,放回后洗勻再隨機抽出一張.

1)請用畫樹形圖或列表的方法(只選其中一種),表示出兩次抽出的紙牌數(shù)字可能出現(xiàn)的所有結(jié)果;

2)若規(guī)定:兩次抽出的紙牌數(shù)字之和為奇數(shù),則小昆獲勝,兩次抽出的紙牌數(shù)字之和為偶數(shù),則小明獲勝,這個游戲公平嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寧城縣出租車收費標(biāo)準(zhǔn)為:起步價格5元,3千米后每千米價格1.2元,則某人乘坐出租車走x(x﹥3)千米應(yīng)付元.

查看答案和解析>>

同步練習(xí)冊答案