【題目】如圖所示,拋物線y=ax2+bx+c的對稱軸為x=,與x軸的一個交點A(,0),拋物線的頂點B縱坐標1<yB<2,則以下結論:①abc<0;b2-4ac>0;3a-b=0;4a+c<0;<a<.其中正確結論的個數(shù)是( )

A. 2 B. 3 C. 4 D. 5

【答案】B

【解析】

由拋物線開口方向,對稱軸的位置以及與軸的交點位置,確定的正負,由拋物線與x軸有兩個交點得到b2-4ac>0;拋物線y=ax2+bx+c的對稱軸為x=,即可判斷③;拋物線與x軸的一個交點A(,0),得到 把把b=3a代入即可判斷④,根據(jù)拋物線的頂點B縱坐標1<yB<2,即可判斷⑤.

①∵拋物線開口向下,

a<0,

∵對稱軸是: ,

a、b異號,

b>0,

∵拋物線與y軸交于正半軸,

c>0,

abc<0,

∴選項①正確;

②∵拋物線與x軸有兩個交點,

b2-4ac>0

選項②正確;

③拋物線對稱軸是:

b=3a,

3a+b=0,

∴選項③不正確;

④拋物線與x軸的一個交點A(,0),

b=3a代入得:

故選項④正確;

⑤由對稱性得:拋物線與x軸的另一個交點為

拋物線的方程為:

拋物線的頂點B縱坐標1<yB<2,

解得:

∴選項⑤不正確;

正確的有3個,

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=BC=2,ABC=120°,將△ABC繞點B順時針旋轉角α(0°<α<90°)得△A1BC1,A1BAC于點E,A1C1分別交AC、BCD、F兩點.

(1)如圖1,觀察并猜想,在旋轉過程中,線段BEBF有怎樣的數(shù)量關系?并證明你的結論;

(2)如圖2,當α=30°時,試判斷四邊形BC1DA的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點,AE=ED,DF=DC,連接EF并延長交BC的延長線于點G.

(1)求證:ABE∽△DEF;

(2)若正方形的邊長為4,求BG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形的A1B1P1P2頂點P1、P2在反比例函數(shù)y= (x>0)的圖象上,頂點A1、B1分別在x軸、y軸的正半軸上,再在其右側作正方形P2P3A2B2,頂點P3在反比例函數(shù)y= (x>0)的圖象上,頂點A2在x軸的正半軸上,則點P3的坐標為  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方格紙中每個小正方形的邊長都是單位1,OAB在平面直角坐標系中的位置如圖所示.解答問題:

(1)請按要求對ABO作如下變換:

OAB向下平移2個單位,再向左平移3個單位得到O1A1B1

以點O為位似中心,位似比為2:1,將ABC在位似中心的異側進行放大得到OA2B2

(2)寫出點A1,A2的坐標: ,

(3)OA2B2的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,并解決問題:任意一個大于1的正整數(shù)m都可以表示為:m=p2+q(p、q是正整數(shù),在m的所有這種表示中,如果最小時,規(guī)定:F(m)=.例如:21可以表示為:21=12+20=22+17=32+12=42+5,因為>>>,所以F(21)=

(1)F(33)的值;

(2)如果一個正整數(shù)n可以表示為t2-t(其中t≥2,且是正整數(shù)),那么稱n是次完全平方數(shù),證明:任何一個次完全平方數(shù)n,都有F(n)=1;

(3)一個三位自然數(shù)k,k=100a+10b+c(其中1≤a≤9,0≤b≤9,0≤c≤9,且a≤c,a、b、c為整數(shù)),滿足十位上的數(shù)字恰好等于百位上的數(shù)字與個位上的數(shù)字之和,且k與其十位上數(shù)字的2倍之和能被9整除,求所有滿足條件的kF(k)的最小值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,DEBC,點F在邊AC上,DFBE相交于點G,且∠EDF=ABE.

求證:(1)DEF∽△BDE;(2)DGDF=DBEF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經過A(﹣1,0)、B(3,0)兩點.

(1)求拋物線的解析式和頂點坐標;

(2)P為拋物線上一點,若SPAB=10,求出此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】周末,小凱和同學帶著皮尺,去測量楊大爺家露臺遮陽篷的寬度.如圖,由于無法直接測量,小凱便在樓前地面上選擇了一條直線EF,通過在直線EF上選點觀測,發(fā)現(xiàn)當他位于N點時,他的視線從M點通過露臺D點正好落在遮陽篷A點處;當他位于N′點時,視線從M′點通過D點正好落在遮陽篷B點處,這樣觀測到的兩個點A、B間的距離即為遮陽篷的寬.已知ABCDEF,點CAG上,AG、DE、MN、MN′均垂直于EF,MNMN′,露臺的寬CDGE.實際測得,GE=5米,EN=15.5米,NN′=6.2米.請根據(jù)以上信息,求出遮陽篷的寬AB是多少米?

查看答案和解析>>

同步練習冊答案