【題目】如圖,某數(shù)學興趣小組想測量一棵樹CD的高度,他們先在點A處測得樹頂C的仰角為30°,然后沿AD方向前行10m,到達B點,在B處測得樹頂C的仰角高度為60°(A、B、D三點在同一直線上).請你根據(jù)他們測量數(shù)據(jù)計算這棵樹CD的高度(結果精確到0.1m).(參考數(shù)據(jù):≈1.414,≈1.732)

【答案】8.7

【解析】試題分析:首先利用三角形的外角的性質求得∠ACB的度數(shù),得到BC的長度,然后在直角△BDC中,利用三角函數(shù)即可求解.

試題解析:∵∠CBD=∠A+∠ACB

∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°

∴∠A=∠ACB,

∴BC=AB=10(米).

在直角△BCD中,CD=BCsin∠CBD=10×=5≈5×1.732=8.7(米).

答:這棵樹CD的高度為8.7米.

考點:解直角三角形的應用

型】解答
束】
23

【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+ax+b交x軸于A(1,0),B(3,0)兩點,點P是拋物線上在第一象限內的一點,直線BP與y軸相交于點C.

(1)求拋物線y=﹣x2+ax+b的解析式;

(2)當點P是線段BC的中點時,求點P的坐標;

(3)在(2)的條件下,求sin∠OCB的值.

【答案】(1) y=﹣x2+4x﹣3;(2) P的坐標為(,);(3) .

【解析】分析:(1)將點AB代入拋物線y=-x2+ax+b,解得a,b可得解析式;

(2)由C點橫坐標為0可得P點橫坐標,將P點橫坐標代入(1)中拋物線解析式,易得P點坐標;

(3)由P點的坐標可得C點坐標,AB、C的坐標,利用勾股定理可得BC長,利用sin∠OCB=可得結果.

詳解:(1)將點A、B代入拋物線y=﹣x2+ax+b可得,

,

解得,a=4,b=﹣3,

∴拋物線的解析式為:y=﹣x2+4x﹣3;

(2)∵點Cy軸上,

所以C點橫坐標x=0,

∵點P是線段BC的中點,

∴點P橫坐標xP==,

∵點P在拋物線y=﹣x2+4x﹣3上,

yP=﹣3=

∴點P的坐標為(,);

(3)∵點P的坐標為(,),點P是線段BC的中點,

∴點C的縱坐標為﹣0=,

∴點C的坐標為(0,),

BC==,

sinOCB===

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了鼓勵市民節(jié)約用水,某市居民生活用水按階梯式水價計費,表是該市居民一戶一表生活用水階梯式計費價格表的一部分信息:(水價計費=自來水銷售費用+污水處理費用)

自來水銷售價格

污水處理價格

每戶每月用水量

單價:元/

單價:元/

17噸及以下

a

0.80

超過17噸不超過30噸的部分

b

0.80

超過30噸的部分

6.00

0.80

已知小王家20124月份用水20噸,交水費66元;5月份用水25噸,交水費91元.

(1)求a,b的值.

(2)小王家6月份交水費184元,則小王家6月份用水多少噸?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O是等邊△ABC內一點,D是△ABC外的一點,∠AOB110°,∠BOCα,△BOC≌△ADC,∠OCD60°,連接OD

1)求證:△OCD是等邊三角形;

2)當α150°時,試判斷△AOD的形狀,并說明理由;

3)探究:當α為多少度時,△AOD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=mx2﹣6mx+5mx軸交于A、B兩點,以AB為直徑的⊙P經(jīng)過該拋物線的頂點C,直線l∥ x軸,交該拋物線于M、N兩點,交⊙ PE、F兩點,若EF=2,則MN的長是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 直線MN與直線PQ垂直相交于O,點A在射線OP上運動,點B在射線OM上運動.

1)如圖1,已知AE、BE分別是∠BAO和∠ABO角的平分線,點A、B在運動的過程中,∠AEB的大小是否會發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其值;

2)如圖2,延長BAG,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及其延長線相交于E、F,則∠EAF=______°;在AEF中,如果有一個角是另一個角的3倍,試求∠ABO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面的情境對話,然后解答問題

1)根據(jù)奇異三角形的定義,請你判斷小華提出的命題:等邊三角形一定是奇異三角形是真命題還是假命題?

2)在RtABC 中, ACB90°,ABc,ACb,BCa,且ba,若RtABC是奇異三角形,求abc

3)如圖,ABO的直徑,C是上一點(不與點AB重合),D是半圓的中點,CD在直徑AB的兩側,若在O內存在點E使得AEAD,CBCE

求證:ACE是奇異三角形;

ACE是直角三角形時,求AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某自行車廠一周計劃生產(chǎn)輛自行車,平均每天生產(chǎn)輛,由于各種原因實際每天生產(chǎn)量與計劃量相比有出入,下表是某周的生產(chǎn)情況(超產(chǎn)為正,減產(chǎn)為負);

星期

增減

根據(jù)記錄可知前三天共生產(chǎn)________輛;

產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)________輛;

該廠實行計件工資制,每輛車元,超額完成任務每輛獎元,少生產(chǎn)一輛扣元,那么該廠工人這一周的工資總額是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,AD的中點,

且∠ABM=∠BAM,連接BM,MN,BN.

(1)求證:BM=MN;

(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】老師隨機抽查了本學期學生讀課外書冊數(shù)的情況,繪制成條形圖(圖1)和不完整的扇形圖(圖2),其中條形圖被墨跡遮蓋了一部分.

(1)求條形圖中被遮蓋的數(shù),并寫出冊數(shù)的中位數(shù);

(2)在所抽查的學生中隨機選一人談讀書感想,求選中讀書超過5冊的學生的概率;

(3)隨后又補查了另外幾人,得知最少的讀了6冊,將其與之前的數(shù)據(jù)合并后,發(fā)現(xiàn)冊數(shù)的中位數(shù)沒改變,則最多補查了   人.

查看答案和解析>>

同步練習冊答案