(1)如圖,在?ABCD中,對角線AC、BD相交于點O.請找出圖中的一對全等三角形,并給予證明;

(2)規(guī)定:一條弧所對的圓心角的度數(shù)作為這條弧的度數(shù).
①如圖,在⊙O中,弦AC、BD相交于點P,已知弧AB、弧CD分別為65°和45°,求∠APB;
②一般地,在⊙O中,弦AC、BD相交于點P,若弧AB、弧CD分別為m°和n°,求∠APB.
(用m、n的代數(shù)式表示)

解:(1)△AOB≌△COD.
∵四邊形ABCD為平行四邊形,
∴AO=CO,OB=OD.
∵∠AOB=∠COD,
∴△AOB≌△COD(SAS).

(2)①如圖:連接AD,
∵弧AB、弧CD分別為65°和45°,
∴∠ADB=65°÷2=32.5°,
∠CAD=45°÷2=22.5°,
∴∠APB=32.5°+22.5°=55°.
②同理得∠APB=(m°+n°).
分析:根據(jù)平行四邊形的性質(zhì)再利用SAS判定△AOB≌△COD,利用圓心角、弧、弦的關(guān)系來解答第二問.
點評:此題考查了全等三角形的判定方法及圓心角弧,弦的關(guān)系等知識點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,在①AB=AC ②AD=AE ③∠B=∠C ④BD=CE四個條件中,能證明△ABD與△ACE全等的條件順序是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

34、已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,在AB、AC上各取一點D、E,使得AE=AD,連接CD、BE相交于點O,再連接AO.若∠CAO=∠BAO,則圖中全等三角形共有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在AB∥CD,∠A=40°,∠C=80°.求∠E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在AB、AC上各取一點E、D,使AE=AD,連接BD、CE相交于點O,再連接AO、BC,若∠1=∠2,則圖中全等三角形共有( 。

查看答案和解析>>

同步練習(xí)冊答案