以邊長為1的正方形的對角線長為邊長的新的正方形的面積為
2
2
分析:先畫圖,由于正方形ABCD的邊長是1,根據(jù)勾股定理,易求AC2,而AC是正方形ACEF的邊長,根據(jù)正方形的面積公式可求正方形ACEF的面積.
解答:解:如右圖,正方形ABCD的邊長是1,AC是對角線,
∵四邊形ABCD是正方形,
∴AB=BC=1,∠B=90°,
在Rt△ABC中,根據(jù)勾股定理得:AC2=AB2+BC2=1+1=2,
∴S正方形ACEF=AC2=2.
故答案是2.
點評:本題考查了正方形的性質(zhì)、勾股定理,解題的關鍵是先求出AC2
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,以邊長為1的正方形的四邊中點為頂點作四邊形,再以所得四邊形四邊中點為頂點作四邊形,…依次作下去,圖中所作的第三個四邊形的周長為
 
;所作的第n個四邊形的周長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

王師傅有兩塊板材邊角料,其中一塊是邊長為60cm的正方形板子;另一塊是上底為30cm,下底為120cm,高為60cm的直角梯形板子(如圖①).王師傅想將這兩塊板子裁成兩塊全等的矩形板材.他將兩塊板子疊放在一起,使梯形的兩個直角頂點分別與正方形的兩個頂點重合,兩塊板子的重疊部分為五邊形ABCFE圍成的區(qū)域(如圖②).由于受材料紋理的限制,要求裁出的矩形要以點B為一個頂點.
(1)求FC的長;
(2)利用圖②求出矩形頂點B所對的頂點到BC邊的距離x(cm)為多少時,矩形的面積y(cm2)最大?最大面積是多少?
(3)若想使裁出的矩形為正方形,試求出面積最大的正方形的邊長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:第6章《二次函數(shù)》?碱}集(19):6.4 二次函數(shù)的應用(解析版) 題型:解答題

王師傅有兩塊板材邊角料,其中一塊是邊長為60cm的正方形板子;另一塊是上底為30cm,下底為120cm,高為60cm的直角梯形板子(如圖①).王師傅想將這兩塊板子裁成兩塊全等的矩形板材.他將兩塊板子疊放在一起,使梯形的兩個直角頂點分別與正方形的兩個頂點重合,兩塊板子的重疊部分為五邊形ABCFE圍成的區(qū)域(如圖②).由于受材料紋理的限制,要求裁出的矩形要以點B為一個頂點.
(1)求FC的長;
(2)利用圖②求出矩形頂點B所對的頂點到BC邊的距離x(cm)為多少時,矩形的面積y(cm2)最大?最大面積是多少?
(3)若想使裁出的矩形為正方形,試求出面積最大的正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源:第2章《二次函數(shù)》中考題集(27):2.8 二次函數(shù)的應用(解析版) 題型:解答題

王師傅有兩塊板材邊角料,其中一塊是邊長為60cm的正方形板子;另一塊是上底為30cm,下底為120cm,高為60cm的直角梯形板子(如圖①).王師傅想將這兩塊板子裁成兩塊全等的矩形板材.他將兩塊板子疊放在一起,使梯形的兩個直角頂點分別與正方形的兩個頂點重合,兩塊板子的重疊部分為五邊形ABCFE圍成的區(qū)域(如圖②).由于受材料紋理的限制,要求裁出的矩形要以點B為一個頂點.
(1)求FC的長;
(2)利用圖②求出矩形頂點B所對的頂點到BC邊的距離x(cm)為多少時,矩形的面積y(cm2)最大?最大面積是多少?
(3)若想使裁出的矩形為正方形,試求出面積最大的正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年湖北省鄂州市石山中學中考數(shù)學模擬試卷(四)(解析版) 題型:解答題

王師傅有兩塊板材邊角料,其中一塊是邊長為60cm的正方形板子;另一塊是上底為30cm,下底為120cm,高為60cm的直角梯形板子(如圖①).王師傅想將這兩塊板子裁成兩塊全等的矩形板材.他將兩塊板子疊放在一起,使梯形的兩個直角頂點分別與正方形的兩個頂點重合,兩塊板子的重疊部分為五邊形ABCFE圍成的區(qū)域(如圖②).由于受材料紋理的限制,要求裁出的矩形要以點B為一個頂點.
(1)求FC的長;
(2)利用圖②求出矩形頂點B所對的頂點到BC邊的距離x(cm)為多少時,矩形的面積y(cm2)最大?最大面積是多少?
(3)若想使裁出的矩形為正方形,試求出面積最大的正方形的邊長.

查看答案和解析>>

同步練習冊答案