【題目】如圖,在⊙O中,AB為直徑,F是半圓弧AB的中點,E是弧BF上一點,直線AE與過點B的切線相交于點C,連接EF.
(1)若EF=AB,求∠ACB的度數(shù);
(2)若⊙O的半徑為3,BC=2,求EF的長.
【答案】(1)75°;(2)
【解析】
(1)連接OE、OF、AF,根據(jù)等邊三角形的性質(zhì)得到∠EOF=60°,由圓周角定理得到∠EAF=∠EOF=30°,根據(jù)切線的性質(zhì)得到∠ABC=90°,根據(jù)直角三角形的性質(zhì)計算即可;
(2)連BE、AF、BF,過F作FM⊥EF交AE于M,根據(jù)勾股定理求出AC,根據(jù)三角形的面積公式求出BE,證明△AFM≌△BFE,根據(jù)全等三角形的性質(zhì)得到AM=BE,EF=FM,根據(jù)等腰直角三角形的性質(zhì)計算,得到答案.
解:(1)連接OE、OF、AF,
∵EF=AB=OE=OF,
∴△EOF為等邊三角形,
∴∠EOF=60°,
由圓周角定理得,∠EAF=∠EOF=30°,
∵F是半圓弧AB的中點,
∴∠AOF=90°,
∴∠OAF=45°,
∴∠CAB=15°,
∵BC為⊙O的切線,
∴∠ABC=90°,
∴∠ACB=75°;
(2)連BE、AF、BF,過F作FM⊥EF交AE于M,
則∠AEB=∠CEB=90°.
∵∠ABC=90°,AB=6,BC=2,
∴AC===2,
由面積法得,BE==,
∴AE==,
∵AB為直徑,
∴∠AFB=90°,又FM⊥EF,
∴∠AFM=∠BFE,
在△AFM和△BFE中,
,
∴△AFM≌△BFE(ASA),
∴AM=BE=,EF=FM.
∵EM=AE﹣AM=,
∴EF=EM=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,點A與原點重合,點B在y軸的正半軸上,點D在x軸的負(fù)半軸上,將正方形ABCD繞點A逆時針旋轉(zhuǎn)30°至正方形AB′C′D′的位置,B′C′與CD相交于點M,則M的坐標(biāo)為( 。
A.(1,)B.(﹣1,)C.(1,)D.(﹣1,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶,別稱“山城”、“霧都”,旅游資源豐富,自然人文旅游景點獨具特點.近年來,重慶以其獨特“3D魔幻”般的城市魅力吸引了眾多海內(nèi)外游客,成為名副其實的旅游打卡網(wǎng)紅城市.某中學(xué)想了解該校九年級1200名學(xué)生對重慶自然人文旅游景點的了解情況,從九(1)、九(2)班分別抽取了30名同學(xué)進(jìn)行測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進(jìn)行整理、描述和分析.下面給出了部分信息:
a.測試成績分成5組,其中A組:50<x≤60,B組:60<x≤70,C組:70<x≤80,D組:80<x≤90,E組:90<x≤100.測試成績統(tǒng)計圖如下:
b.九(2)班D組的測試成績分別是:81、82、82、83、84、85、86、87、88、89、89、90、90、90.
c.九(1)(2)班測試成績的平均數(shù)、中位數(shù)、眾數(shù)如下:
課程 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
九(1) | 84.2 | 84 | 89 |
九(2) | 84.6 | π | 90 |
根據(jù)以上信息,回答下列問題:
(1)根據(jù)題意,直接寫出m,n的值:m= ,n= ;九(2)班測試成績扇形統(tǒng)計圖中A組的圓心角α= °;
(2)在此次測試中,你認(rèn)為 班的學(xué)生對重慶自然人文景點更了解(填“九(1)”或“九(2)”),請說明理由(一條理由即可): ;
(3)假設(shè)該校九年級學(xué)生都參加此次測試,測試成績大于90分為優(yōu)秀,請估計該校九年級對重慶自然人文景點的了解達(dá)到優(yōu)秀的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形的邊長是2,是高所在直線上的一個動點,連接,將線段繞點逆時針旋轉(zhuǎn)得到,連接,則在點運動過程中,線段長度的最小值是( )
A.B.1C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將繞點逆時針旋轉(zhuǎn)得到.
(1)觀察猜想
小明發(fā)現(xiàn),將繞點逆時針旋轉(zhuǎn),如圖1,他發(fā)現(xiàn)的面積與的面積之間有一定的數(shù)量關(guān)系,請直接寫出這個關(guān)系:______;
(2)類比探究
如圖2,是的中點,請寫出與之間的數(shù)量關(guān)系和位置關(guān)系,并說明理由;
(3)解決問題
如圖3,,,,,在線段上,交于,若,,請直接寫出的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,點為邊的中點,點在上,,過點作交于點.下列結(jié)論:①;②;③;④.正確的是( ).
A.①②B.①③C.①③④D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李在景區(qū)銷售一種旅游紀(jì)念品,已知每件進(jìn)價為6元,當(dāng)銷售單價定為8元時,每天可以銷售200件.市場調(diào)查反映:銷售單價每提高1元,日銷量將會減少10件,物價部門規(guī)定:銷售單價不能超過12元,設(shè)該紀(jì)念品的銷售單價為x(元),日銷量為y(件),日銷售利潤為w(元).
(1)求y與x的函數(shù)關(guān)系式.
(2)要使日銷售利潤為720元,銷售單價應(yīng)定為多少元?
(3)求日銷售利潤w(元)與銷售單價x(元)的函數(shù)關(guān)系式,當(dāng)x為何值時,日銷售利潤最大,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,是邊上的一點,連接,是邊上的中點,過點作的平行線交的延長線于點,且,連接.
(1)求證:;
(2)如果,試判斷四邊形的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+3經(jīng)過點A(﹣1,0),B(3,0),與y軸交于點C.點D(xD,yD)為拋物線上一個動點,其中1<xD<3.連接AC,BC,DB,DC.
(1)求該拋物線的解析式;
(2)當(dāng)△BCD的面積等于△AOC的面積的2倍時,求點D的坐標(biāo);
(3)在(2)的條件下,若點M是x軸上一動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點B,D,M,N為頂點的四邊形是平行四邊形.若存在,求出點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com