【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,點(diǎn)P從點(diǎn)B出發(fā),沿對角線BD向點(diǎn)D勻速運(yùn)動,速度為4cm/s,過點(diǎn)P作PQ⊥BD交BC于點(diǎn)Q,以PQ為一邊作正方形PQMN,使得點(diǎn)N落在射線PD上,點(diǎn)O從點(diǎn)D出發(fā),沿DC向點(diǎn)C勻速運(yùn)動,速度為3m/s,以O(shè)為圓心,0.8cm為半徑作⊙O,點(diǎn)P與點(diǎn)O同時出發(fā),設(shè)它們的運(yùn)動時間為t(單位:s)(0<t<).
(1)如圖1,連接DQ平分∠BDC時,t的值為 ;
(2)如圖2,連接CM,若△CMQ是以CQ為底的等腰三角形,求t的值;
(3)請你繼續(xù)進(jìn)行探究,并解答下列問題:
①證明:在運(yùn)動過程中,點(diǎn)O始終在QM所在直線的左側(cè);
②如圖3,在運(yùn)動過程中,當(dāng)QM與⊙O相切時,求t的值;并判斷此時PM與⊙O是否也相切?說明理由.
【答案】(1);(2);(3)①證明見解析,②t=,PM與⊙O不相切.
【解析】
試題分析:(1)先證△PBQ∽△CBD,求出PQ、BQ,進(jìn)而可求出t值;(2)先證△QTM∽△BCD,利用線段成比例可求出t值;(3)①QM交CD于E,利用DE、DO差值比較可判斷點(diǎn)O始終在QM所在直線的左側(cè);②由①可知⊙O只有在左側(cè)與直線QM相切于點(diǎn)H,QM與CD交于點(diǎn)E.由△OHE∽△BCD,利用線段成比例可求t值,再利用反證法證明直線PM不可能與⊙O相切.
試題解析:解:(1)如圖1中,在矩形ABCD中,∠A=∠C=∠ADC=∠ABC=90°,AB=CD=6.AD=BC=8,∴,∵PQ⊥BD,∴∠BPQ=90°,∵∠PBQ=∠DBC,∠BPQ=∠C,∴△PBQ∽△CBD,∴==,∴==,∴PQ=3t,BQ=5t,∵DQ平分∠BDC,QP⊥DB,QC⊥DC,∴QP=QC,∴3t=6﹣5t,
∴t=.(2)解:如圖2中,作MT⊥BC于T.∵MC=MQ,MT⊥CQ,∴TC=TQ,∴ TQ=(8﹣5t),QM=3t,
∵MQ∥BD,∴∠MQT=∠DBC,∵∠MTQ=∠BCD=90°,∴△QTM∽△BCD,∴=,∴
∴t=(s),∴t=s時,△CMQ是以CQ為底的等腰三角形.(3)①證明:如圖2中,由此QM交CD于E,
∵EQ∥BD,∴=,∴EC=(8﹣5t),ED=DC﹣EC=6﹣(8﹣5t)=t,∵DO=3t,∴DE﹣DO=t﹣3t=t>0,∴點(diǎn)O在直線QM左側(cè).②解:如圖3中,由①可知⊙O只有在左側(cè)與直線QM相切于點(diǎn)H,QM與CD交于點(diǎn)E.∵EC=(8﹣5t),DO=3t,∴OE=6﹣3t﹣(8﹣5t)=t,∵OH⊥MQ,∴∠OHE=90°,∵∠HEO=∠CEQ,
∴∠HOE=∠CQE=∠CBD,∵∠OHE=∠C=90°,∴△OHE∽△BCD,∴=,∴,∴t=.
∴t=s時,⊙O與直線QM相切.連接PM,假設(shè)PM與⊙O相切,則∠OMH= PMQ=22.5°,在MH上取一點(diǎn)F,使得MF=FO,則∠FMO=∠FOM=22.5°,∴∠OFH=∠FOH=45°,∴OH=FH=0.8,F(xiàn)O=FM=0.8 ,∴MH=0.8(+1),
由=得到HE=,由=得到EQ=,∴MH=MQ﹣HE﹣EQ=4- - =,
∴0.8(+1)≠,矛盾,∴假設(shè)不成立.∴直線MQ與⊙O不相切.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從下列不等式中選一個與x+2≥1組成不等式組,若要使該不等式組的解集為x≥﹣1,則可以選擇的不等式是( 。
A. x>﹣2 B. x>0 C. x<0 D. x<﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)(﹣2,y1),(﹣1,y2),(1,y3)都在直線y=﹣3x+b上,則y1,y2,y3的大小關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC和△A′B′C′中,下面能得到△ABC≌△A′B′C′的條件是( 。
A. AB=A′B′,AC=A′C’,∠B=∠B′ B. AB=A′B′,BC=B′C’,∠A=∠A′
C. AC=A′C′,BC=B′C′,∠C=∠C′ D. AC=A′C′,BC=B′C′,∠B=∠B′
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知m、n是關(guān)于x的方程x2+2x﹣1=0的兩個不相等的實(shí)數(shù)根,則m+n=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】銳角為45°的直角三角形的兩直角邊長也相等,這樣的三角形稱為等腰直角三角形.我們常用的三角板中有一塊就是這樣的三角形,也可稱它為等腰直角三角板.把兩塊全等的等腰直角三角板按如圖1放置,其中邊BC、FP均在直線l上,邊EF與邊AC重合.
(1)將△EFP沿直線l向左平移到圖2的位置時,EP交AC于點(diǎn)Q,連接AP,BQ.猜想并寫出BQ與AP所滿足的數(shù)量關(guān)系和位置關(guān)系,請證明你的猜想;
(2)將△EFP沿直線l向左平移到圖3的位置時,EP的延長線交AC的延長線于點(diǎn)Q,連接AP,BQ.你認(rèn)為(1)中所猜想的BQ與AP的數(shù)量關(guān)系和位置關(guān)系還成立嗎?若成立,給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我區(qū)5月份連續(xù)五天的日最高氣溫(單位:℃)分別為:33,30,30,32,35.則這組數(shù)據(jù)的中位數(shù)和平均數(shù)分別是( )
A.32,32
B.32,33
C.30,31
D.30,32
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=(x﹣2)2+3的頂點(diǎn)坐標(biāo)是( )
A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】想了解某電視臺對正在播出的某電視節(jié)目收視率的情況,適合采用的調(diào)查方式是 . (填“全面調(diào)查”或“抽樣調(diào)查”)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com