【題目】如圖,點O是△ABC內任一點,點D,E,F(xiàn)分別為OA,OB,OC的中點,則圖中相似三角形有( )
A. 1對 B. 2對 C. 3對 D. 4對
【答案】D
【解析】
根據(jù)點D,E,F分別為OA,OB,OC的中點,可得DE是△AOB的中位線,DF是△AOC的中位線,EF是△BOC的中位線,可得DE//AB,DF//AC,EF//BC,進而可判定△DOE∽△AOD, △DOF∽△AOC, △EOF∽△BOC,根據(jù)中位線性質可得,,
繼而可得,可判定△DEF∽△ABC.
因為點D,E,F分別為OA,OB,OC的中點,
所以DE是△AOB的中位線,DF是△AOC的中位線,EF是△BOC的中位線,
所以DE//AB,DF//AC,EF//BC,
所以△DOE∽△AOD, △DOF∽△AOC, △EOF∽△BOC,
因為DE是△AOB的中位線,DF是△AOC的中位線,EF是△BOC的中位線,
所以,,
所以,
所以△DEF∽△ABC,
因此有四對相似三角形,
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】甲種污水處理器處理25噸的污水與乙種污水處理器處理35噸的污水所用的時間相同,已知乙種污水處理器每小時比甲種污水處理器多處理20噸的污水.
(1)分別求甲、乙兩種污水處理器的污水處理效率;
(2)若某廠每天同時開甲、乙兩種污水處理器處理污水共4小時,且甲、乙兩種污水處理器處理污水每噸需要的費用分別30元和50元,問該廠每個月(以30天計)需要污水處理費多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,O是坐標原點,長方形OACB的頂點A、B分別在x軸與y軸上,已知OA=6,OB=10.點D為y軸上一點,其坐標為(0,2),點P從點A出發(fā)以每秒2個單位的速度沿線段AC﹣CB的方向運動,當點P與點B重合時停止運動,運動時間為t秒.
(1)當點P經過點C時,求直線DP的函數(shù)解析式;
(2)①求△OPD的面積S關于t的函數(shù)解析式;
②如圖②,把長方形沿著OP折疊,點B的對應點B′恰好落在AC邊上,求點P的坐標.
(3)點P在運動過程中是否存在使△BDP為等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB=AC.如圖,D、E為∠BAC的平分線上的兩點,連接BD、CD、BE、CE;如圖4, D、E、F為∠BAC的平分線上的三點,連接BD、CD、BE、CE、BF、CF;如圖5, D、E、F、G為∠BAC的平分線上的四點,連接BD、CD、BE、CE、BF、CF、BG、CG……依此規(guī)律,第17個圖形中有全等三角形的對數(shù)是( 。
A.17B.54C.153D.171
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個鋁質的三角形框架的三邊長分別為24 cm,30 cm,36 cm,要做一個與它相似的鋁質三角形的框架,現(xiàn)有長27 cm,45 cm的兩根鋁材,要求以其中的一根為邊,從另一根上截下兩段(允許有余材),則截法有______種.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,按以下步驟作圖:①分別以 B,C 為圓心,以大于BC 的長為半徑作弧,兩弧相交于兩點 M,N;②作直線 MN 交 AB 于點 D,連接 CD.若 CD=AC,∠A=50°,則∠ACB 的度數(shù)為
A.90°B.95°C.105°D.110°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解方程:
(1)(x-5)2=16 (直接開平方法) (2)x2+5x=0 (因式分解法)
(3)x2-4x+1=0 (配方法) (4)x2+3x-4=0 (公式法)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于x的一元二次方程(c+a)x2+2bx+(c-a)=0,其中a、b、c分別為△ABC三邊的長.
(1)如果方程有兩個相等的實數(shù)根,試判斷△ABC的形狀并說明理由;
(2)已知a:b:c=3:4:5,求該一元二次方程的根.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com