【題目】正方形ABCD的邊長為1,其面積記為S1 , 以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積記為S2 , …按此規(guī)律繼續(xù)下去,則S9的值為(
A.
B.
C.
D.

【答案】B
【解析】解:在圖中標上字母E,如圖所示.
∵正方形ABCD的邊長為1,△CDE為等腰直角三角形,
∴DE2+CE2=CD2 , DE=CE,
∴S2+S2=S1
觀察,發(fā)現(xiàn)規(guī)律:S1=12=1,S2= S1= ,S3= S2= ,S4= S3= ,…,
∴Sn=( n1
當n=9時,S9=( 91=( 8 ,
故選:B.
【考點精析】關(guān)于本題考查的等腰直角三角形和正方形的性質(zhì),需要了解等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】計算:12﹣7×(﹣4)+8÷(﹣2)的結(jié)果是(
A.﹣24
B.﹣20
C.6
D.36

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有160個零件,平均分配給甲、乙兩個車間加工,乙車間因另有緊急任務(wù),所以在甲車間加工3小時后才開始加工,因此比甲車間遲20分鐘完成。
(1)已知甲、乙兩車間的生產(chǎn)效率的比是1:3,則甲、乙兩車間每小時各能加工多少零件?
(2)如果零件總數(shù)為a個,(1)中其它條件不變,則甲、乙兩車間每小時各加工多少個零件(用含a的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖, C 是線段 AB 上一點, 5BC=2AB,D AB 的中點,E CB 的中點,(1) DE=6,求 AB 的長;(2)求 AD:AC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,若直線y=kx+b經(jīng)過第一、三、四象限,則直線y=bx+k不經(jīng)過的象限是( 。
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果|a+2|+(b﹣1)2=0,那么(a+b)2016的值是( )
A.﹣2009
B.2009
C.﹣1
D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個幾何體的主視圖、左視圖和俯視圖都是圓,則這個幾何體是(

A.圓柱B.C.圓錐D.正方體

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC 中,∠A+∠B =900.

⑴根據(jù)要求畫圖:

①過點C畫直線 MN ∥AB

②過點C畫AB的垂線,交AB于點D.

⑵請在⑴的基礎(chǔ)上回答下列問題:

①已知∠B+∠DCB=900,則∠A與∠DCB 的大小關(guān)系為__________,理由是__________.

②圖中線段_________的長度表示點 A 到直線CD的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:二次函數(shù)的圖象與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,對稱軸是直線x=1,且圖象向右平移一個單位后經(jīng)過坐標原點O,

(1)求這個二次函數(shù)的解析式;

(2)直線交y軸于D點,E為拋物線頂點.若∠DBC=α,∠CBE=β,求α-β的值.

(3)在(2)問的前提下,P為拋物線對稱軸上一點,且滿足PA=PC,在y軸右側(cè)的拋物線上是否存在點M,使得△BDM的面積等于PA2若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案