【題目】如圖,已知在Rt△ABC中,∠C為直角,AC=5,BC=12,在Rt△ABC內(nèi)從左往右疊放邊長(zhǎng)為1的正方形小紙片,第一層小紙片的一條邊都在AB上,依次這樣往上疊放上去,則最多能疊放個(gè).
【答案】22
【解析】解:由勾股定理得:AB= =13.
由三角形的面積計(jì)算公式可知:△ABC的高= = .
如圖所示:根據(jù)題意有:△CAB∽△CEF
∴ = =
∴EF= =10
∴第一層可放置10個(gè)小正方形紙片.
同法可得總共能放4層,依次可放置10、7、4、1個(gè)小正方形紙片,
∴最多能疊放10+7+4+1=22(個(gè))
所以答案是:22個(gè).
【考點(diǎn)精析】掌握正方形的性質(zhì)和相似三角形的判定與性質(zhì)是解答本題的根本,需要知道正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D是AB邊上一點(diǎn),以BD為直徑的⊙O與邊AC相切于點(diǎn)E,連接DE并延長(zhǎng)DE交BC的延長(zhǎng)線于點(diǎn)F.
(1)求證:BD=BF;
(2)若CF=1,cosB= ,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班為了解學(xué)生一學(xué)期做義工的時(shí)間情況,對(duì)全班50名學(xué)生進(jìn)行調(diào)查,按做義工的時(shí)間t(單位:小時(shí)),將學(xué)生分成五類:A類(0≤t≤2),B類(2<t≤4),C類(4<t≤6),D類(6<t≤8),E類(t>8). 繪制成尚不完整的條形統(tǒng)計(jì)圖如圖.根據(jù)以上信息,解答下列問(wèn)題:
(1)E類學(xué)生有人,補(bǔ)全條形統(tǒng)計(jì)圖;
(2)D類學(xué)生人數(shù)占被調(diào)查總?cè)藬?shù)的%;
(3)從該班做義工時(shí)間在0≤t≤4的學(xué)生中任選2人,求這2人做義工時(shí)間都在2<t≤4中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)G是△ABC的重心,下列結(jié)論:① ;② ;③△EDG∽△CGB;④ .其中正確的個(gè)數(shù)有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=﹣x2+3x與x軸的正半軸交于點(diǎn)A,點(diǎn)B在拋物線上,且橫坐標(biāo)為2,作BC⊥x軸于點(diǎn)C,⊙B經(jīng)過(guò)原點(diǎn)O,點(diǎn)E為⊙B上一動(dòng)點(diǎn),點(diǎn)F在AE上.
(1)求點(diǎn)A的坐標(biāo);
(2)如圖1,連結(jié)OE,當(dāng)AF:FE=1:2時(shí),求證:△ACF∽△AOE;
(3)如圖2,當(dāng)點(diǎn)F是AE的中點(diǎn)時(shí),求CF的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB、AC分別交于點(diǎn)D,E,DF⊥AC于點(diǎn)F.
(1)求證:點(diǎn)D是AB的中點(diǎn);
(2)判斷DF與⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)若⊙O的直徑為20,cosB= ,求陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,水庫(kù)堤壩的橫斷面是梯形,測(cè)得BC長(zhǎng)為30m,CD長(zhǎng)為20 m,斜坡AB的坡比為1:3,斜坡CD的坡比為1:2,則壩底的寬AD為m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=ax2﹣ax+6與x軸負(fù)半軸交于點(diǎn)A,與x軸的正半軸交于點(diǎn)B,且AB=7.
(1)如圖1,求a的值;
(2)如圖2,點(diǎn)P在第一象限內(nèi)拋物線上,過(guò)P作PH∥AB,交y軸于點(diǎn)H,連接AP,交OH于點(diǎn)F,設(shè)HF=d,點(diǎn)P的橫坐標(biāo)為t,求d與t之間的函數(shù)關(guān)系式,并直接寫(xiě)出t的取值范圍;
(3)如圖3,在(2)的條件下,當(dāng)PH=2d時(shí),將射線AP沿著x軸翻折交拋物線于點(diǎn)M,在拋物線上是否存在點(diǎn)N,使∠AMN=45°,若存在,求出點(diǎn)N的坐標(biāo).若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線y=x2﹣2x+k與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,﹣3).[圖2、圖3為解答備用圖]
(1)k= , 點(diǎn)A的坐標(biāo)為 , 點(diǎn)B的坐標(biāo)為;
(2)設(shè)拋物線y=x2﹣2x+k的頂點(diǎn)為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點(diǎn)D,使四邊形ABDC的面積最大?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)在拋物線y=x2﹣2x+k上求點(diǎn)Q,使△BCQ是以BC為直角邊的直角三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com