如圖,已知二次函數(shù)的圖象過(guò)點(diǎn)O(0,0),A(4,0),B(2,﹣),M是OA的中點(diǎn).
(1)求此二次函數(shù)的解析式;
(2)設(shè)P是拋物線上的一點(diǎn),過(guò)P作x軸的平行線與拋物線交于另一點(diǎn)Q,要使四邊形PQAM是菱形,求P點(diǎn)的坐標(biāo);
(3)將拋物線在x軸下方的部分沿x軸向上翻折,得曲線OB′A(B′為B關(guān)于x軸的對(duì)稱點(diǎn)),在原拋物線x軸的上方部分取一點(diǎn)C,連接CM,CM與翻折后的曲線OB′A交于點(diǎn)D.若△CDA的面積是△MDA面積的2倍,這樣的點(diǎn)C是否存在?若存在求出C點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
(1) y=x2﹣x.(2) P(1,﹣).(3) 點(diǎn)C的坐標(biāo)為(2+2,)或(2﹣2,).
解析試題分析:(1)利用待定系數(shù)法求出二次函數(shù)的解析式;
(2)由四邊形PQAM是菱形,可知PQ=2且PQ∥x軸,因此點(diǎn)P、Q關(guān)于對(duì)稱軸x=2對(duì)稱,可得點(diǎn)P橫坐標(biāo)為1,從而求出點(diǎn)P的坐標(biāo);
(3)假設(shè)存在滿足條件的點(diǎn)C.由△CDA的面積是△MDA面積的2倍,可得點(diǎn)C縱坐標(biāo)是點(diǎn)D縱坐標(biāo)的3倍,由此列方程求出點(diǎn)C的坐標(biāo).
試題解析:(1)∵拋物線過(guò)原點(diǎn),∴設(shè)其解析式為:y=ax2+bx.
∵拋物線經(jīng)過(guò)點(diǎn)A(4,0),B(2,﹣),
∴,解得,
∴二次函數(shù)解析式為:y=x2﹣x.
(2)∵y=x2﹣x=(x﹣2)2﹣,
∴拋物線對(duì)稱軸為直線:x=2.
∵四邊形PQAM是菱形,
∴PQ=MA=2,PQ∥x軸.
∴點(diǎn)P、Q關(guān)于對(duì)稱軸x=2對(duì)稱,
∴點(diǎn)P橫坐標(biāo)為1.
當(dāng)x=1時(shí),y=﹣=﹣.
∴P(1,﹣).
(3)依題意,翻折之后的拋物線解析式為:y=﹣x2+x.
假設(shè)存在這樣的點(diǎn)C,
∵△CDA的面積是△MDA面積的2倍,
∴CD=2MD,∴CM=3MD.
如圖所示,分別過(guò)點(diǎn)D、C作x軸的垂線,垂足分別為點(diǎn)E、點(diǎn)F,則有DE∥CF.
∴,
∴CF=3DE,MF=3ME.
設(shè)C(x,x2﹣x),
則MF=x﹣2,ME=MF=(x﹣2),OE=ME+OM=x+
∴D(x+,﹣(x+)2+(x+)).
∵CF=3DE,
∴x2﹣x=3[﹣(x+)2+(x+)],
整理得:x2﹣4x﹣8=0,
解得:x1=2+2,x2=2﹣2.
∴y1=,y2=,
∴存在滿足條件的點(diǎn)C,點(diǎn)C的坐標(biāo)為(2+2,)或(2﹣2,).
考點(diǎn):二次函數(shù)綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖,在平面直角坐標(biāo)系xOy中,若動(dòng)點(diǎn)P在拋物線y=ax2上,⊙P恒過(guò)點(diǎn)F(0,n),且與直線y=﹣n始終保持相切,則n= (用含a的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,經(jīng)過(guò)原點(diǎn)的拋物線y=-x2+bx(b>2)與x軸的另一交點(diǎn)為A,過(guò)點(diǎn)P(1,)作直線PN⊥x軸于點(diǎn)N,交拋物線于點(diǎn)B.點(diǎn)B關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C.連結(jié)CB,CP.
(1)當(dāng)b=4時(shí),求點(diǎn)A的坐標(biāo)及BC的長(zhǎng);
(2)連結(jié)CA,求b的適當(dāng)?shù)闹担沟肅A⊥CP;
(3)當(dāng)b=6時(shí),如圖2,將△CBP繞著點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn),得到△CB′P′,CP與拋物線對(duì)稱軸的交點(diǎn)為E,點(diǎn)M為線段B′P′(包含端點(diǎn))上任意一點(diǎn),請(qǐng)直接寫出線段EM長(zhǎng)度的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直線y=﹣3x﹣3與x軸、y軸分別相交于點(diǎn)A、C,經(jīng)過(guò)點(diǎn)C且對(duì)稱軸為x=1的拋物線y=ax2+bx+c與x軸相交于A、B兩點(diǎn).
(1)試求點(diǎn)A、C的坐標(biāo);
(2)求拋物線的解析式;
(3)若點(diǎn)M在線段AB上以每秒1個(gè)單位長(zhǎng)度的速度由點(diǎn)B向點(diǎn)A運(yùn)動(dòng),同時(shí),點(diǎn)N在線段OC上以相同的速度由點(diǎn)O向點(diǎn)C運(yùn)動(dòng)(當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng)),又PN∥x軸,交AC于P,問(wèn)在運(yùn)動(dòng)過(guò)程中,線段PM的長(zhǎng)度是否存在最小值?若有,試求出最小值;若無(wú),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知直線過(guò)點(diǎn)和,是軸正半軸上的動(dòng)點(diǎn),的垂直平分線交于點(diǎn),交軸于點(diǎn).
(1)直接寫出直線的解析式;
(2)當(dāng)時(shí),設(shè),的面積為,求S關(guān)于t的函數(shù)關(guān)系式;并求出S的最大值;
(3)當(dāng)點(diǎn)Q在線段AB上(Q與A、B不重合)時(shí),直線過(guò)點(diǎn)A且與x軸平行,問(wèn)在上是否存在點(diǎn)C,使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,求出點(diǎn)C的坐標(biāo),并證明;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線經(jīng)過(guò)點(diǎn)A(1,0),B(5,0),C(0,)三點(diǎn),設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且在x軸下方,四邊形OEBF是以O(shè)B為對(duì)角線的平行四邊形.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)E(x,y)運(yùn)動(dòng)時(shí),試求平行四邊形OEBF的面積S與x之間的函數(shù)關(guān)系式,并求出面積S的最大值?
(3)是否存在這樣的點(diǎn)E,使平行四邊形OEBF為正方形?若存在,求E點(diǎn),F(xiàn)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線y=x2+mx+(m﹣1)與x軸交于點(diǎn)A(x1,0),B(x2,0),x1<x2,與y軸交于點(diǎn)C(0,c),且滿足x12+x22+x1x2=7.
(1)求拋物線的解析式;
(2)在拋物線上能不能找到一點(diǎn)P,使∠POC=∠PCO?若能,請(qǐng)求出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線C1:y=(x+m)2(m為常數(shù),m>0),平移拋物線y=﹣x2,使其頂點(diǎn)D在拋物線C1位于y軸右側(cè)的圖象上,得到拋物線C2.拋物線C2交x軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C,設(shè)點(diǎn)D的橫坐標(biāo)為a.
(1)如圖1,若m=.
①當(dāng)OC=2時(shí),求拋物線C2的解析式;
②是否存在a,使得線段BC上有一點(diǎn)P,滿足點(diǎn)B與點(diǎn)C到直線OP的距離之和最大且AP=BP?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由;
(2)如圖2,當(dāng)OB=2﹣m(0<m<)時(shí),請(qǐng)直接寫出到△ABD的三邊所在直線的距離相等的所有點(diǎn)的坐標(biāo)(用含m的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).
(1)求A、B、C的坐標(biāo);
(2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過(guò)點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過(guò)點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過(guò)點(diǎn)Q作QN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長(zhǎng)最大時(shí),求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),連接DQ.過(guò)拋物線上一點(diǎn)F作y軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).若FG=DQ,求點(diǎn)F的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com