【題目】如圖1,拋物線y=ax2+bx+3(a≠0)與x軸、y軸分別交于點A(﹣1,0)、B(3,0)、點C三點.
(1)試求拋物線的解析式;
(2)點D(2,m)在第一象限的拋物線上,連接BC、BD.試問,在對稱軸左側(cè)的拋物線上是否存在一點P,滿足∠PBC=∠DBC?如果存在,請求出點P點的坐標;如果不存在,請說明理由;
(3)如圖2,在(2)的條件下,將△BOC沿x軸正方向以每秒1個單位長度的速度向右平移,記平移后的三角形為△B′O′C′.在平移過程中,△B′O′C′與△BCD重疊的面積記為S,設(shè)平移的時間為t秒,試求S與t之間的函數(shù)關(guān)系式?
【答案】
(1)
解:將A(﹣1,0)、B(3,0)代入拋物線y=ax2+bx+3(a≠0),
,
解得:a=﹣1,b=2.
故拋物線解析式為:y=﹣x2+2x+3.
(2)
解:存在
將點D代入拋物線解析式得:m=3,
∴D(2,3),
令x=0,y=3,
∴C(0,3),
∴OC=OB,
∴∠OCB=∠CBO=45°,
如下圖,
在y軸上取點G,使GC=CD=2,
在△CDB與△CGB中
∵BC=BC、∠DCB=∠BCO、GC=DC(SAS)
∴△CDB≌△CGB,
∴∠PBC=∠DBC,
∵點G(0,1),
設(shè)直線BP:y=kx+1,
代入點B(3,0),
∴k=﹣ ,
∴直線BP:y=﹣ x+1,
聯(lián)立直線BP和二次函數(shù)解析式:
,
解得: 或 (舍),
∴P(﹣ , ).
(3)
解:直線BC:y=﹣x+3,直線BD:y=﹣3x+9,
當0≤t≤2時,如下圖:
設(shè)直線C′B′:y=﹣(x﹣t)+3
聯(lián)立直線BD求得F( , ),
S=S△BCD﹣S△CC′E﹣S△C′DF
= ×2×3﹣ ×t×t﹣ ×(2﹣t)(3﹣ )
整理得:S=﹣ t2+3t(0≤t≤2).
當2<t≤3時,如下圖:
H(t,﹣3t+9),I(t,﹣t+3)
S=S△HIB= [(﹣3t+9)﹣(﹣t+3)]×(3﹣t)
整理得:S=t2﹣6t+9(2<t≤3)
綜上所述:S= .
【解析】(1)將點A、B代入拋物線解析式,求出a、b值即可得到拋物線解析式;(2)根據(jù)已知求出點D的坐標,在y軸上取點G,使GC=CD=2,只要證明證明△CDB≌△CGB,可知∠PBC=∠DBC,寫出直線BP解析式,聯(lián)立二次函數(shù)解析式,求出點P坐標;(3)分兩種情況,第一種情況重疊部分為四邊形,利用大三角形減去兩個小三角形求得解析式,第二種情況重疊部分為三角形,可利用三角形面積公式求得.
【考點精析】根據(jù)題目的已知條件,利用二次函數(shù)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規(guī)律,經(jīng)過第2011次運動后,動點P的坐標是____________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在中, , 平分交于點,點在線段上(點不與點、重合),且.
()如圖,若,且,則__________, __________.
()如圖,①求證: .
②若,且,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個矩形紙片OACB,將該紙片放置在平面直角坐標系中,點A(11,0),點B(0,6),點P為BC邊上的動點(點P不與點B,C重合),經(jīng)過點O、P折疊該紙片,得點B′和折痕OP(如圖①)經(jīng)過點P再次折疊紙片,使點C落在直線PB′上,得點C′和折痕PQ(如圖②),當點C′恰好落在OA上時,點P的坐標是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當今社會手機越來越普及,有很多人開始過份依賴手機,一天中使用手機時間過長而形成了“手機癮”.為了解我校初三年級學(xué)生的手機使用情況,學(xué)生會隨機調(diào)查了部分學(xué)生的手機使用時間,將調(diào)查結(jié)果分成五類:A、基本不用;B、平均一天使用1~2小時;C、平均一天使用2~4小時;D、平均一天使用4~6小時;E、平均一天使用超過6小時.并用得到的數(shù)據(jù)繪制成了如下兩幅不完整的統(tǒng)計圖(圖1、2),請根據(jù)相關(guān)信息,解答下列問題:
(1)將上面的條形統(tǒng)計圖補充完整;
(2)若一天中手機使用時間超過6小時,則患有嚴重的“手機癮”.我校初三年級共有1490人,試估計我校初三年級中約有多少人患有嚴重的“手機癮”;
(3)在被調(diào)查的基本不用手機的4位同學(xué)中有2男2女,現(xiàn)要從中隨機再抽兩名同學(xué)去參加座談,請你用列表法或樹狀圖方法求出所選兩位同學(xué)恰好是一名男同學(xué)和一位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為提高居民的節(jié)水意識,向陽小區(qū)開展了“建設(shè)節(jié)水型社區(qū),保障用水安全”為主題的節(jié)水宣傳活動.小瑩同學(xué)積極參與小區(qū)的宣傳活動,并對小區(qū)300戶家庭用水情況進行了抽樣調(diào)查.她在300戶家庭中隨機調(diào)查了50戶家庭5月份的用水量,結(jié)果如圖所示.把圖中每組用水量的值用該組的中間值(如0~6的中間值為3)來代替,估計該小區(qū)5月份的用水量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,關(guān)于 x,y 的方程組的解滿足 x<0,y>0.
(1)x= ,y= (用含 a 的代數(shù)式表示);
(2)求 a 的取值范圍;
(3)若 2x8y=2m,用含有 a 的代數(shù)式表示 m,并求 m 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE與AC交于點M,EF與AC交于點N,動點P從點A出發(fā)沿AB以每秒1個單位長的速度向點B勻速運動,伴隨點P的運動,矩形PEFG在射線AB上滑動;動點K從點P出發(fā)沿折線PE﹣﹣EF以每秒1個單位長的速度勻速運動.點P、K同時開始運動,當點K到達點F時停止運動,點P也隨之停止.設(shè)點P、K運動的時間是t秒(t>0).
(1)當t=1時,KE= , EN=;
(2)當t為何值時,△APM的面積與△MNE的面積相等?
(3)當點K到達點N時,求出t的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,完全平方式可以用平面幾何圖形的面積來表示。實際上還有一些代數(shù)恒等式也可以用這種形式表示,如:(2a+b)(a+b)=2a2+3ab+b2,就可以用圖(1)或圖(2)等圖形的面積表示。
(1)請寫出圖(3)所表示的代數(shù)恒等式: ;
(2)試畫一個幾何圖形,使它的面積表示:(a+b)(a+2b)=a2+3ab+2b2;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com