【題目】在△ABC中,BA=BC,∠BAC=α,M是AC的中點(diǎn),P是線段BM上的動(dòng)點(diǎn),將線段PA繞點(diǎn)P順時(shí)針旋轉(zhuǎn)2α得到線段PQ.
(1)若α=60°,且點(diǎn)P與點(diǎn)M重合(如圖1),線段CQ的延長(zhǎng)線交射線BM于點(diǎn)D,此時(shí)∠CDB的度數(shù)為________
(2)在圖2中,點(diǎn)P不與點(diǎn)B、M重合,線段CQ的延長(zhǎng)線交射線BM于點(diǎn)D,則∠CDB的度數(shù)為(用含α的代數(shù)式表示)________.
(3)對(duì)于適當(dāng)大小的α,當(dāng)點(diǎn)P在線段BM上運(yùn)動(dòng)到某一位置(不與點(diǎn)B、M重合)時(shí),能使得線段CQ的延長(zhǎng)線與射線BM交于點(diǎn)D,且PQ=DQ,則α的取值范圍是________
【答案】 30° 90°﹣α 45°<α<60°
【解析】解:(1)如圖1,∵BA=BC,∠BAC=60°,∴AB=BC=AC,∠ABC=60°,∵M為AC的中點(diǎn),∴MB⊥AC,∠CBM=30°,AM=MC.
∵PQ由PA旋轉(zhuǎn)而成,∴AP=PQ=QM=MC.
∵∠AMQ=2α=120°,∴∠MCQ=60°,∠QMD=30°,∴∠MQC=60°,∴∠CDB=30°.
故答案為:30°;
(2)如圖2,連接PC,∵由(1)得BM垂直平分AC,∴AP=PC,∠ADB=∠CDB,∠PAD=∠PCD,又∵PQ=PA,∴PQ=PC=PA,∴Q,C,A在以P為圓心,PA為半徑的圓上,∴∠ACQ=∠APQ=α,∴∠BAC=∠ACD,∴DC∥BA,∴∠CDB=∠ABD=90°﹣α.
故答案為:90°﹣α;
(3)∵∠CDB=90°﹣α,且PQ=QD,∴∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,∵點(diǎn)P不與點(diǎn)B,M重合,∴∠BAD>∠PAD>∠MAD,∴2α>180°﹣2α>α,∴45°<α<60°.
故答案為:45°<α<60°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生體育訓(xùn)練的情況,某市從全市九年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行了一次體育科目測(cè)試(把測(cè)試結(jié)果分為四個(gè)等級(jí):A級(jí)、B級(jí)、C級(jí)、D級(jí)),并將那個(gè)測(cè)試結(jié)果繪成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問(wèn)題:
(1)本次抽樣測(cè)試的學(xué)生人數(shù)是 ;
(2)扇形圖中∠α的度數(shù)是 ,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)對(duì)A,B,C,D四個(gè)等級(jí)依次賦分為90,75,65,55(單位:分),比如:等級(jí)為A的同學(xué)體育得分為90分,…,依此類推.該市九年級(jí)共有學(xué)生32000名,如果全部參加這次體育測(cè)試,估計(jì)該市九年級(jí)不及格(即60分以下)學(xué)生的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y1=a(x+2)2﹣3與y2=(x﹣3)2+1交于點(diǎn)A(1,3),過(guò)點(diǎn)A作x軸的平行線,分別交兩條拋物線于點(diǎn)B,C.則以下結(jié)論:
①無(wú)論x取何值,y2的值總是正數(shù);
②a=1;
③當(dāng)x=0時(shí),y2﹣y1=4;
④2AB=3AC;
其中正確結(jié)論是( 。
A. ①② B. ②③ C. ③④ D. ①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中有三點(diǎn)A(﹣2,1),B(3,1),C(2,3),請(qǐng)解答下列問(wèn)題:
(1)在坐標(biāo)系內(nèi)描出A,B,C的位置;
(2)畫出△ABC關(guān)于x軸對(duì)稱的圖形△A1B1C1,并寫出頂點(diǎn)A1,B1,C1的坐標(biāo);
(3)寫出∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:若x2+y2+2x-4y+5=0,求x、y.
解:∵x2+y2+2x-4y+5=0,(x2+2x+1)+(y2-4y+4)=0
∴(x+1)2+(y-2)2=0 ∴(x+1)2=0,(y-2)2=0
∴x=-1,y=2.
根據(jù)你的觀察,探究下面的問(wèn)題:
已知:如圖,在△ABC中,∠A、∠B、∠C所對(duì)的邊分別為a、b、c,點(diǎn)E是AC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)E與點(diǎn)A、C不重合).
(1)當(dāng)a、b滿足a2+b216a12b+100=0,且c是不等式組的最大整數(shù)解,試求△ABC的三邊長(zhǎng);
(2)在(1)的條件得到滿足的△ABC中,若設(shè)AE=m,則當(dāng)m滿足什么條件時(shí),BE將△ABC的周長(zhǎng)分成兩部分的差不小于2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直角△ABC的三個(gè)頂點(diǎn)分別是A(﹣3,1),B(0,3),C(0,1)
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C1;
(2)分別連結(jié)AB1、BA1后,求四邊形AB1A1B的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】不透明的口袋里裝有紅、黃、藍(lán)三種顏色的小球若干個(gè)(除顏色外其余都相同),其中紅球2個(gè)(分別標(biāo)有1號(hào)、2號(hào)),藍(lán)球1個(gè).若從中任意摸出一個(gè)球,它是藍(lán)球的概率為.
(1)求袋中黃球的個(gè)數(shù);
(2)第一次任意摸出一個(gè)球(不放回),第二次再摸出一個(gè)球,請(qǐng)用畫樹(shù)狀圖或列表格的方法,求兩次摸到不同顏色球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把一張長(zhǎng)方形紙片 ABCD 折疊起來(lái),使其對(duì)角頂點(diǎn) A,C 重合,若其長(zhǎng) BC 為 9,寬 AB 為 3.
⑴求證:△AEF 是等腰三角形;
⑵EF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)經(jīng)濟(jì)的快速發(fā)展讓眾多國(guó)家感受到了威脅,隨著釣魚(yú)島事件、南海危機(jī)、薩德入韓等一系列事件的發(fā)生,國(guó)家安全一再受到威脅,所謂“國(guó)家興亡,匹夫有責(zé)”,某校積極開(kāi)展國(guó)防知識(shí)教育,九年級(jí)甲、乙兩班
分別選5名同學(xué)參加“國(guó)防知識(shí)”比賽,
其預(yù)賽成績(jī)?nèi)鐖D所示:
(1)根據(jù)上圖填寫下表:
平均數(shù) | 中位數(shù) | 眾數(shù) | |
甲班 | 8.5 | 8.5 |
|
乙班 | 8.5 |
| 10 |
(2)分別求甲乙兩班的方差,并從穩(wěn)定性上分析哪個(gè)班的成績(jī)較好.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com