【題目】如圖,ABC的兩外角平分線交于點(diǎn)P,易證∠P=90°- A;ABC的兩內(nèi)角的平分線交于點(diǎn)Q,易證∠BQC=90°+A;那么△ABC的內(nèi)角平分線BM與外角平分CM的夾角∠M=_____A.

【答案】

【解析】

已知CQ、CM分別是∠ACB及其外角的平分線,可得∠QCM=90°,由題意可得∠BQC=90°+∠A,根據(jù)三角形外角的性質(zhì)可得,∠BQC=∠QCM+∠M=90°+∠M,由此即可求得∠ A和∠M的關(guān)系.

∵CQ、CM分別是∠ACB及其外角的平分線,

∴∠QCM=90°,

由題意可得∠BQC=90°+∠A,

根據(jù)三角形外角的性質(zhì)可得,∠BQC=∠QCM+∠M=90°+∠M,

∴90°+∠A=90°+∠M,

∠A=∠M.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,FAD的中點(diǎn),延長(zhǎng)BC到點(diǎn)E,使CE=BC,連結(jié)DE,CF。

1)求證:四邊形CEDF是平行四邊形;

2)若AB=4,AD=6,∠B=60°,求DE的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖所示,在ABC中,∠BAC=60°,AD=AE,BE、CD交于點(diǎn)F,且∠DFE=120°.BE的延長(zhǎng)線上截取ET=DC,連接AT.

(1)求證:∠ADC=AET;

(2)求證:AT=AC;

(3)設(shè)BC邊上的中線APBE交于Q.求證:∠QAB=QBA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩位同學(xué)將一個(gè)二次三項(xiàng)式因式分解,一位同學(xué)因看錯(cuò)了一次項(xiàng)系數(shù)而分解成2,另一位同學(xué)因看錯(cuò)了常數(shù)項(xiàng)而分解成2,請(qǐng)將原多項(xiàng)式因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,ABC=70°,以B為圓心,任意長(zhǎng)為半徑畫(huà)弧交AB,BC于點(diǎn)E,F(xiàn),再分別以點(diǎn)E,F(xiàn)為圓心、以大于EF長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,作射線BPAC于點(diǎn)D,則∠BDC為( 。┒龋

A. 65 B. 75 C. 80 D. 85

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)為了吸引顧客,設(shè)計(jì)了一種促銷(xiāo)活動(dòng):在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場(chǎng)同一日內(nèi),每消費(fèi)滿200元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回),商場(chǎng)根據(jù)兩小球所標(biāo)金額的和返還相應(yīng)價(jià)格的購(gòu)物券,可以重新在本商場(chǎng)消費(fèi),某顧客剛好消費(fèi)200元.
(1)該顧客至少可得到元購(gòu)物券,至多可得到元購(gòu)物券;
(2)請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法,求出該顧客所獲得購(gòu)物券的金額不低于30元的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)A(0,4),B(1,0),C(5,0),其對(duì)稱(chēng)軸與x軸相交于點(diǎn)M.

(1)求拋物線的解析式和對(duì)稱(chēng)軸;
(2)在拋物線的對(duì)稱(chēng)軸上是否存在一點(diǎn)P,使△PAB的周長(zhǎng)最。咳舸嬖,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)連接AC,在直線AC的下方的拋物線上,是否存在一點(diǎn)N,使△NAC的面積最大?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,⊙D與y軸相切于點(diǎn)C(0,4),與x軸相交于A、B兩點(diǎn),且AB=6.

(1)求圓的半徑和點(diǎn)D的坐標(biāo);
(2)點(diǎn)A的坐標(biāo)是 , 點(diǎn)B的坐標(biāo)是 , sin∠ACB;
(3)求經(jīng)過(guò)C、A、B三點(diǎn)的拋物線解析式;
(4)設(shè)拋物線的頂點(diǎn)為F,證明直線FA與⊙D相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD為⊙O的直徑,AB=AC,AD交BC于點(diǎn)E,AE=2,ED=4,

(1)求證:△ABE∽△ADB;
(2)求AB的長(zhǎng);
(3)延長(zhǎng)DB到F,使得BF=BO,連接FA,試判斷直線FA與⊙O的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案