如圖1,AB是⊙O的直徑,直線l交⊙O于C1、C2,AD⊥l,垂足為D.
(1)求證:AC1•AC2=AB•AD.
(2)若將直線l向上平移(如圖2),交⊙O于C1、C2,使弦C1C2與直徑AB相交(交點(diǎn)不與A、B重合),其他條件不變,請你猜想,AC1、AC2、AB、AD之間的關(guān)系,并說明理由.
(3)若將直線l平移到與⊙O相切時(shí),切點(diǎn)為C,其他條件不變,請你在圖3上畫出變化后的圖形,標(biāo)好相應(yīng)的字母并猜想AC、AB、AD的關(guān)系是什么?(只寫出關(guān)系,不加以說明)
(1)證明:連接BC2
∵AB為直徑,∴∠BC2A=90度.
∵AD⊥l,即∠ADC1=90°,
∴∠BC2A=∠ADC1
又∵∠B=∠AC1D,
∴△ABC2△AC1D.
AC2
AD
=
AB
AC1

∴AC1•AC2=AB•AD.

(2)當(dāng)l向上平移后,連接BC2
∵AB為直徑,
∴∠BC2A=90度.
∵AD⊥l,即∠ADC1=90°,
∴∠BC2A=∠ADC1
又∵∠B=∠AC1D,
∴△ABC2△AC1D.
AC2
AD
=
AB
AC1

∴AC1•AC2=AB•AD.

(3)AC2=AB•AD.
畫草圖.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長線上,點(diǎn)C在⊙O上,CA=CD,∠CDA=30°.
(1)試判斷直線CD與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑為5,求點(diǎn)A到CD所在直線的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知BC是⊙O的直徑,P是⊙O上一點(diǎn),A是
BP
的中點(diǎn),AD⊥BC于點(diǎn)D,BP與AD相交于點(diǎn)E.
(1)當(dāng)BC=6且∠ABC=60°時(shí),求
AB
的長;
(2)求證:AE=BE.
(3)過A點(diǎn)作AMBP,求證:AM是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,巳知AB是⊙O的一條直徑,延長AB至C點(diǎn),使得AC=3BC,CD與⊙O相切,切點(diǎn)為D.若CD=
3
,則線段BC的長度等于______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,PA、PB是⊙O的切線,A、B為切點(diǎn),C是劣弧AB上的一點(diǎn),∠P=50°,∠C=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠B=90°,O是AB上一點(diǎn),以O(shè)為圓心,OB為半徑的圓與AB交于E,與AC切于點(diǎn)D,直線ED交BC的延長線于F.
(1)求證:BC=FC;
(2)若AD:AE=2:1,求cot∠F的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知⊙O的半徑為4,CD是⊙O的直徑,AC為⊙O的弦,B為CD延長線上的一點(diǎn),∠ABC=30°,且AB=AC.
(1)求證:AB為⊙O的切線;
(2)求弦AC的長;
(3)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),∠CAB=30°,在AB的延長線上取一點(diǎn)P,使得PB=
1
2
AB,試判斷直線PC與⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知PA、PB切⊙O于A、B兩點(diǎn),連AB,且PA,PB的長是方程x2-2mx+3=0的兩根,AB=m.試求:
(1)⊙O的半徑;
(2)由PA,PB,
AB
圍成圖形(即陰影部分)的面積.

查看答案和解析>>

同步練習(xí)冊答案