【題目】如圖,從熱氣球C上測得兩建筑物A,B底部的俯角分別為30°和60度.如果這時(shí)氣球的高度CD為90米.且點(diǎn)A,D,B在同一直線上,求建筑物A,B間的距離.
【答案】解:由已知,得∠ECA=30°,∠FCB=60°,CD=90,
EF∥AB,CD⊥AB于點(diǎn)D.
∴∠A=∠ECA=30°,∠B=∠FCB=60°.
在Rt△ACD中,∠CDA=90°,tanA= ,
∴AD= =90× =90 .
在Rt△BCD中,∠CDB=90°,tanB= ,
∴DB= =30 .
∴AB=AD+BD=90 +30 =120 .
答:建筑物A、B間的距離為120 米
【解析】添加輔助線,將相關(guān)的問題轉(zhuǎn)化到直角三角形中求解。過點(diǎn)C作CD⊥AB于點(diǎn)D,根據(jù)已知易求得∠A、∠B的度數(shù),再在Rt△ACD和Rt△BCD中,分別求出DB、AD的長,就可以求出AB的長。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解解直角三角形的相關(guān)知識,掌握解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法),以及對關(guān)于仰角俯角問題的理解,了解仰角:視線在水平線上方的角;俯角:視線在水平線下方的角.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:P、Q分別是兩條線段a,b上任意一點(diǎn),線段PQ長度的最小值叫做線段a與線段b的距離.已知,O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐標(biāo)系中四點(diǎn).
(1)根據(jù)上述定義,當(dāng)m=2,n=2時(shí),如圖1,線段BC與線段OA的距離為;當(dāng)m=5,n=2時(shí),如圖2,線段BC與線段OA的距離(即線段AB的長)為;
(2)如圖3,若點(diǎn)B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關(guān)于m的函數(shù)解析式.
(3)當(dāng)m值變化時(shí),動(dòng)線段BC與線段OA的距離始終為2,線段BC的中點(diǎn)為M,點(diǎn)D(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m值,使以A、M、H為頂點(diǎn)的三角形與△AOD相似?若存在,求出m值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是的一張紙條,按圖圖圖,把這一紙條先沿折疊并壓平,再沿折疊并壓平,若圖3中,則圖2中的度數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖甲是一個(gè)大長方形剪去一個(gè)小長方形后形成的圖形,已知?jiǎng)狱c(diǎn) P 以每秒 2cm 的速度沿圖甲的邊框按從 B→C→D→E→F→A 的路徑移動(dòng),相應(yīng)的△ABP 的面積 S 與時(shí)間 t 之間 的關(guān)系如圖乙中的圖象表示.若 AB=6cm,則 b=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明騎單車上學(xué),當(dāng)他騎了一段路時(shí),想起要買某本書,于是又折回到剛經(jīng)過的某書店,買到書后繼續(xù)去學(xué)校.以下是他本次上學(xué)所用的時(shí)間與路程的關(guān)系示意圖.根據(jù)圖中提供的信息回答下列問題:
(1)小明家到學(xué)校的路程是 米.
(2)小明在書店停留了 分鐘.
(3)本次上學(xué)途中,小明一共行駛了 米.一共用了 分鐘.
(4)我們認(rèn)為騎單車的速度超過 300 米/分就超過了安全限度.問:在整個(gè)上學(xué)途中哪個(gè)時(shí)間段小明的騎車速度最快,最快速度為多少,在安全限度內(nèi)嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠BAC=120°,以BC為邊向形外作等邊三角形△BCD,把△ABD繞著點(diǎn)D按順時(shí)針方向旋轉(zhuǎn)60°后得到△ECD,若AB=5,AC=3,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AD=2,AB=5,P為CD邊上的動(dòng)點(diǎn),當(dāng)△ADP與△BCP相似時(shí),DP= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某飲料廠開發(fā)了A,B兩種新型飲料,主要原料均為甲和乙,每瓶飲料中甲、乙的含量如下表所示.現(xiàn)用甲原料和乙原料各2800克進(jìn)行試生產(chǎn),計(jì)劃生產(chǎn)A,B兩種飲料共100瓶.設(shè)生產(chǎn)A種飲料x瓶,解析下列問題:
原料名稱 | 甲 | 乙 |
A | 20克 | 40克 |
B | 30克 | 20克 |
(1)有幾種符合題意的生產(chǎn)方案寫出解析過程;
(2)如果A種飲料每瓶的成本為2.60元,B種飲料每瓶的成本為2.80元,這兩種飲料成本總額為y元,請寫出y與x之間的關(guān)系式,并說明x取何值會(huì)使成本總額最低?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩塊全等的三角板如圖①擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)將圖①中的△A1B1C順時(shí)針旋轉(zhuǎn)45°得圖②,點(diǎn)P1是A1C與AB的交點(diǎn),點(diǎn)Q是A1B1與BC的交點(diǎn),求證:CP1=CQ;
(2)在圖②中,若AP1=2,則CQ等于多少?
(3)如圖③,在B1C上取一點(diǎn)E,連接BE、P1E,設(shè)BC=1,當(dāng)BE⊥P1B時(shí),求△P1BE面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com