【題目】如圖,PA、PB分別切⊙O于A、B,連接PO、AB相交于D,C是⊙O上一點,∠C=60°.
(1)求∠APB的大。
(2)若PO=20cm,求△AOB的面積.

【答案】
(1)解:∵PA、PB分別切⊙O于A、B,

∴OA⊥PA,OB⊥PB,

∴∠PAO=∠PBO=90°,

∵∠C=60°,

∴∠AOB=2∠C=2×60°=120°,

∴∠APB=360°﹣∠PAO﹣∠PBO﹣∠AOB=60°


(2)解:∵PA、PB分別切⊙O于A、B,

∴∠PAO=∠PBO=90°,∠APO= ∠APB= ×60°=30°,PA=PB,

∴P在AB的垂直平分線上,

∵OA=OB,

∴O在AB的垂直平分線上,

即OP是AB的垂直平分線,

即OD⊥AB,AD=BD= AB,

∵∠PAO=90°,

∴∠AOP=60°,

在Rt△PAO中,AO= PO= ×20=10(cm),

在Rt△AOD中,AD=AOsin60°=10× =5 (cm),OD=OAcos60°=10× =5(cm),

∴AB=2AD=10 cm,

∴△AOB的面積為: ABOD= ×10 ×5=25 (cm2


【解析】(1)由PA、PB分別切⊙O于A、B,由切線的性質(zhì),即可得OA⊥PA,OB⊥PB,又由圓周角定理,求得∠AOB的度數(shù),繼而求得∠APB的大小;(2)由切線長定理,可求得∠APO的度數(shù),繼而求得∠AOP的度數(shù),易得PO是AB的垂直平分線,然后利用三角函數(shù)的性質(zhì),求得AD與OD的長,繼而求得答案.
【考點精析】根據(jù)題目的已知條件,利用圓周角定理和切線的性質(zhì)定理的相關知識可以得到問題的答案,需要掌握頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的中線BE,CF相交于點GP、Q分別是BG、CG的中點.

(1)求證:四邊形EFPQ是平行四邊形;

(2)請直接寫出BGGE的數(shù)量關系.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a>b,c≠0,則下列關系一定成立的是(
A.ac>bc
B.
C.c﹣a>c﹣b
D.c+a>c+b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是等腰直角△ABC外一點,把BP繞點B順時針旋轉(zhuǎn)90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,則P′A:PB=(
A.1:
B.1:2
C. :2
D.1:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一根40cm的金屬棒,欲將其截成x根7cm的小段和y根9cm的小段,剩余部分作廢料處理,若使廢料最少,則正整數(shù)x,y應分別為 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】嘉淇同學要證明命題兩組對邊分別相等的四邊形是平行四邊形是正確的,她先用尺規(guī)作出了如圖1的四邊形ABCD,并寫出了如下不完整的已知和求證.

已知:如圖1,在四邊形ABCD中,BC=AD,AB=

求證:四邊形ABCD 四邊形.

(1)在方框中填空,以補全已知和求證;

(2)按嘉淇同學的思路寫出證明過程;

(3)用文字敘述所證命題的逆命題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,E、F分別是邊AD、CD上的點,DE=CF,AF與BE相交于O,DG⊥AF,垂足為G.
(1)求證:AF⊥BE;
(2)試探究線段AO、BO、GO的長度之間的數(shù)量關系;
(3)若GO:CF=4:5,試確定E點的位置.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班45名學生的成績被分為5組,第14組的頻數(shù)分別為12,11,9,4,則第5組的頻率是(

A.0.1B.0.2C.0.3D.0.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E是正方形ABCD內(nèi)的一點,連接AE、BE、CE,將ABE繞點B順時針旋轉(zhuǎn)90°CBE′的位置.若AE=1,BE=2,CE=3,則∠BE′C=__度.

查看答案和解析>>

同步練習冊答案