【題目】如圖,下列4×4網(wǎng)格圖都是由16個相同小正方形組成,每個網(wǎng)格圖中有4個小正方形已涂上陰影,請在空白小正方形中,按下列要求涂上陰影.

(1)在圖1中選取2個空白小正方形涂上陰影,使6個陰影小正方形組成一個中心對稱圖形;

(2)在圖2中選取2個空白小正方形涂上陰影,使6個陰影小正方形組成一個軸對稱圖形,但不是中心對稱圖形.

【答案】(1)答案見解析;(2)答案見解析

【解析】

試題分析:(1)根據(jù)中心對稱圖形,畫出所有可能的圖形即可.

(2)根據(jù)是軸對稱圖形,不是中心對稱圖形,畫出圖形即可.

試題解析:(1)在圖1中選取2個空白小正方形涂上陰影,使6個陰影小正方形組成一個中心對稱圖形,答案如圖所示;

(2)在圖2中選取2個空白小正方形涂上陰影,使6個陰影小正方形組成一個軸對稱圖形,但不是中心對稱圖形,答案如圖所示;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,若第二象限內(nèi)的P點到x軸的距離為2,到y軸的距離為3,則P點的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】蘋果的進(jìn)價是每千克3.8元,銷售中估計有5%的蘋果正常損耗.為避免虧本,商家把售價應(yīng)該至少定為每千克 元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某長途汽車站規(guī)定,乘客可以免費攜帶一定質(zhì)量的行李,若超過該質(zhì)量則需購買行李票,且行李票y(元)與行李質(zhì)量x(千克)間的一次函數(shù)關(guān)系式為y=kx﹣5(k≠0),現(xiàn)知貝貝帶了60千克的行李,交了行李費5元.
(1)若京京帶了84千克的行李,則該交行李費多少元?
(2)旅客最多可免費攜帶多少千克的行李?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:ax2﹣ay2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為O的直徑,C為O上一點,AD與過點C的切線互相垂直,垂足為點D,AD交O于點E,連接CE,CB.

(1)求證:CE=CB;

(2)若AC=,CE=,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某種冠狀病毒的直徑長約125納米,1納米=109米,那么這種冠狀病毒的直徑用科學(xué)記數(shù)法可表示為( 。

A.125×109B.1.25×106C.1.25×107D.1.25×108

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】動手操作題:如何能把一個三角形分成兩個等腰三角形嗎?
實際上,一個三角形只要具備下列三個條件之一,都可以被分成兩個等腰三角形:
①一個角為90°;②一個角是另一個的2倍(第三角必須大于45°);
③一個角是另一個角的3倍.今天,我們通過作圖來驗證這個結(jié)論。
(1)問題1:
如圖,Rt△ABC中,求畫一條直線l將△ABC分成兩個等腰三角形.并說明直線l與△ABC
邊上的交點D的位置.

(2)問題2:
如圖,△ABC中,∠ACB=80°, ∠BAC=40°,求畫一條直線l把△ABC分成兩個等腰三角形, 并在圖中標(biāo)注兩個頂角的度數(shù).

(3)問題3:
如圖,△ABC中,∠ACB=120°, ∠BAC=40°,求畫一條直線l把△ABC分成兩個等腰三角形, 并在圖中標(biāo)注兩個頂角的度數(shù).

(4)問題:4:
如果等腰三角形能被一條直線分成兩個等腰三角形,則原等腰三角形的頂角可以是°.(至少寫出三個)
(5)拓展:已知△ABC的三條邊長分別為3,4,6,在△ABC所在平面內(nèi)畫一條直線,將△ABC分割成兩個三角形,使其中的一個是等腰三角形,則這樣的直線最多可畫( )
A.6條
B.7條
C.8條
D.9條

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別是可活動的菱形和平行四邊形學(xué)具,已知平行四邊形較短的邊與菱形的邊長相等.

(1)在一次數(shù)學(xué)活動中,某小組學(xué)生將菱形的一邊與平行四邊形較短邊重合,擺拼成如圖1所示的圖形,經(jīng)過點,連接于點,觀察發(fā)現(xiàn):點的中點.

下面是兩位學(xué)生有代表性的證明思路:

思路1:不需作輔助線,直接證三角形全等;

思路2:不證三角形全等,連接于點.、

……

請參考上面的思路,證明點的中點(只需用一種方法證明);

(2)如圖2,在(1)的條件下,當(dāng)時,延長、交于點,求的值;

(3)在(2)的條件下,若為大于的常數(shù)),直接用含的代數(shù)式表示的值.

查看答案和解析>>

同步練習(xí)冊答案