【題目】如圖,正方形ABCD的邊長為a, P為正方形邊上一動點,運動路線是A-D-C-B-A,P點經 過的路程為x,以點A,P,D為頂點的三角形的面積是y,圖象反映了yx的關系,當時,x=_____.

【答案】

【解析】

根據(jù)從AD運動時,y0,動點從點D出發(fā)向點C運動,此時yx的增加而增大,當點PBC上運動時,y不變,當點PAB上運動時,y隨著x的增大而減小,分情況進行列式計算即可.

根據(jù)題意可知:

當點P由點A向點D運動時,即,

當點P由點D向點C運動時,,

時,解得:

當點PBC上運動時,,

不存在點P使 .

當點PBA上運動時,即時,yx的增大而減小,

時,解得:

綜上所述:當時,x=

故答案為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,,,是線段上靠近點的三等分點.

1)求點的坐標;

2)若點軸上的一動點,連接、,當的值最小時,求出的坐標及的最小值;

3)如圖2,過點,交于點,再將繞點作順時針方向旋轉,旋轉角度為,記旋轉中的三角形為,在旋轉過程中,直線與直線的交點為,直線與直線交于點,當為等腰三角形時,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 為線段上一動點(不與點、重合),在同側分別作正三角形和正三角形,交于點,交于點交于點,連接,以下五個結論:①,②,③,④,⑤,一定成立的是( )

A.①②③④

B.①②④⑤

C.①②③⑤

D.①③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BE是∠ABD的平分線,CF是∠ACD的平分線,BECF交于G,若∠BDC=140°,BGC=110°,則∠A__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校七年級1班體育委員統(tǒng)計了全班同學60秒跳繩的次數(shù),并繪制出如下頻數(shù)分布表和頻數(shù)分布直方圖:

次數(shù)

80≤x<100

100≤x<120

120≤x<140

140≤x<160

160≤x<180

180≤x<200

頻數(shù)

a

4

12

16

8

3

結合圖表完成下列問題:

(1)a=   

(2)補全頻數(shù)分布直方圖;

(3)寫出全班人數(shù)是   ,并求出第三組“120≤x<140”的頻率(精確到0.01)

(4)若跳繩次數(shù)不少于140的學生成績?yōu)閮?yōu)秀,則優(yōu)秀學生人數(shù)占全班總人數(shù)的百分之幾?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC=10厘米,BC=8厘米,點DAB 的中點.如果點P在線段BC上以3厘米/秒的速度由B點向C點運動,同時點Q在線段CA上由C點向A點運動.當一個點停止運動時時,另一個點也隨之停止運動.設運動時間為t.

(1)用含有t的代數(shù)式表示CP.

(2)若點Q的運動速度與點P的運動速度相等,經過1秒后,△BPD與△CQP是否全等,請說明理由;

(3)若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,O為平面直角坐標系的原點,點A坐標為(4,0),同時將點A,O分別向上平移2個單位,再向左平移1個單位,得到對應點B,C

1)求四邊形OABC的面積;

2)在y軸上是否存在一點M,使MOA的面積與四邊形OABC的面積相等?若存在這樣一點,求出點M的坐標,若不存在,請說明理由;

3)如圖2,點POA邊上,且∠CBP=CPB,QAO延長線上一動點,∠PCQ的平分線CDBP的延長線于點D,在點Q運動的過程中,求∠D和∠CQP的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用長度一定的不銹鋼材料設計成外觀為矩形的框架(如圖①②中的一種).設豎檔AB=x米,請根據(jù)以上圖案回答下列問題:(題中的不銹鋼材料總長均指各圖中所有黑線的長度和,所有橫檔和豎檔分別與AD、AB平行)

(1)在圖①中,如果不銹鋼材料總長度為12米,當x為多少時,矩形框架ABCD的面積為3平方米?

(2)在圖②中,如果不銹鋼材料總長度為12米,當x為多少時,矩形框架ABCD的面積S最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過點AAEBC,垂足為E,連接DEF為線段DE上一點,且∠AFE=B

1)求證:ADF∽△DEC

2)若AB=4,AD=AE=3,求AF的長.

查看答案和解析>>

同步練習冊答案