如圖,四邊形ABCD是正方形,△ADE繞著點A旋轉(zhuǎn)90°后到達(dá)△ABF的位置,連接EF,則△AEF的形狀是( 。
A.等腰三角形B.直角三角形
C.等腰直角三角形D.等邊三角形

依題意得,旋轉(zhuǎn)中心為點A,E與F,B與D分別為對應(yīng)點,旋轉(zhuǎn)角為90°,
∴AE=AF,∠EAF=∠DAB=90°,
∴△AEF為等腰直角三角形.
故選:C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在矩形ABCD中,AB=3,AD=6,將BC繞著點B逆時針旋轉(zhuǎn),當(dāng)點C落在AD邊上的點C′處時,∠CBC′=______°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在8×8的正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系,已知A(2,4),B(4,2).C是第一象限內(nèi)的一個格點,由點C與線段AB組成一個以AB為底,且腰長為無理數(shù)的等腰三角形.
(1)填空:C點的坐標(biāo)是______,△ABC的面積是______;
(2)將△ABC繞點C旋轉(zhuǎn)180°得到△A1B1C1,連接AB1、BA1,試判斷四邊形AB1A1B是何種特殊四邊形,請說明理由;
(3)請?zhí)骄浚涸趚軸上是否存在這樣的點P,使四邊形ABOP的面積等于△ABC面積的2倍?若存在,請直接寫出點P的坐標(biāo)(不必寫出解答過程);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,已知△ABC是等腰直角三角形,∠BAC=90°,點D是BC的中點.作正方形DEFG,使點A,C分別在DG和DE上,連接AE,BG.
(1)試猜想線段BG和AE的數(shù)量關(guān)系,請直接寫出你得到的結(jié)論;
(2)將正方形DEFG繞點D逆時針方向旋轉(zhuǎn)一定角度后(旋轉(zhuǎn)角度大于0°,小于或等于360°),如圖②,通過觀察或測量等方法判斷(1)中的結(jié)論是否仍然成立?如果成立,請予以證明;如果不成立,請說明理由;
(3)若BC=DE=2,在(2)的旋轉(zhuǎn)過程中,當(dāng)AE為最大值時,求AF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,E點是正方形ABCD的邊BC上一點,AB=12,BE=5,△ABE逆時針旋轉(zhuǎn)后能夠與△ADF重合.
(1)旋轉(zhuǎn)中心是______,旋轉(zhuǎn)角為______度;
(2)△AEF是______三角形;
(3)求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在菱形ABCD中,AB=BD.點E、F分別在AB、AD上,且AE=DF.連接BF與DE相交于點G,連接CG與BD相交于點H.下列結(jié)論:
①△AED≌△DFB;②S四邊形BCDG=
3
4
CG2;③若AF=2DF,則BG=6GF.
其中正確的結(jié)論( 。
A.只有①②B.只有①③C.只有②③D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,將正五邊形ABCDE的C點固定,并依順時針方向旋轉(zhuǎn),若要使得新五邊形A′B′C′D′E′的頂點D′落在直線BC上,則至少要旋轉(zhuǎn)______°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,畫出△ABC關(guān)于原點O對稱的△A1B1C1,并寫出點A1、B1、C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,以點B為中心,把△ABC旋轉(zhuǎn)180°.

查看答案和解析>>

同步練習(xí)冊答案