【題目】如圖,直線l1 :y=-3x+3x軸交于點(diǎn)D,直線l2經(jīng)過A(4,0)、B(3,)兩點(diǎn),直線l1 與直線l2交于點(diǎn)C.

(1)求直線l2的解析式和點(diǎn)C的坐標(biāo);

(2) y軸上是否存在一點(diǎn)P,使得四邊形PDBC的周長(zhǎng)最。咳舸嬖,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

【答案】(1) y=x-6,點(diǎn)C(2,-3);(2)存在,點(diǎn)P的坐標(biāo)為(0,-1).

【解析】

1)將點(diǎn)A(4,0)B(3,-)代入y=kx+b中,用待定系數(shù)法即可求出直線l2的解析式;聯(lián)立兩直線的解析式即可求出點(diǎn)C的坐標(biāo);

2)作點(diǎn)D關(guān)于y軸的對(duì)稱點(diǎn)D1,連結(jié)C D1,交y軸于一點(diǎn),則該點(diǎn)即為要求的點(diǎn)P,用待定系數(shù)法求出CD1的解析式,然后可求出點(diǎn)P的坐標(biāo).

(1) 設(shè)直線l2的解析式為y=kx+b(k0),將點(diǎn)A(4,0)、B(3-)代入y=kx+b中,

,

解得 ,

所以直線l2的解析式為y=x-6.

聯(lián)立方程組,

,

解得,

∴點(diǎn)C(2,-3)

(2)存在,作點(diǎn)D關(guān)于y軸的對(duì)稱點(diǎn)D1,連結(jié)C D1,交y軸于一點(diǎn),則該點(diǎn)即為要求的點(diǎn)P

y=-3x+3中,令y=0,則x=1,即點(diǎn)D(1,0),點(diǎn)D關(guān)于y軸的對(duì)稱點(diǎn)D1(-1,0),

∴點(diǎn)C(,0).

設(shè)直線C D1的解析式為y=kx+b(k0),將點(diǎn)C(2,-3)、D1(-1,0)代入,得:

得:,解得

∴直線BC的解析式為y=-x-1 ,令x=0,則y=-1,

則點(diǎn)P的坐標(biāo)為(0,-1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一條筆直的東西向海岸線l上有一長(zhǎng)為1.5km的碼頭MN和燈塔C,燈塔C距碼頭的東端N20km.一輪船以36km/h的速度航行,上午1000A處測(cè)得燈塔C位于輪船的北偏西30°方向,上午1040B處測(cè)得燈塔C位于輪船的北偏東60°方向,且與燈塔C相距12km.

(1)若輪船照此速度與航向航向,何時(shí)到達(dá)海岸線?

(2)若輪船不改變航向,該輪船能否?吭诖a頭?請(qǐng)說明理由(參考數(shù)據(jù): ≈1.4 ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=12cm,BC=6cm,點(diǎn)P沿AB邊從點(diǎn)A開始向點(diǎn)B2cm/s的速度移動(dòng),點(diǎn)Q沿DA邊從點(diǎn)D開始向點(diǎn)A1cm/s的速度移動(dòng),如果P、Q同時(shí)出發(fā),用t(s)表示移動(dòng)的時(shí)間(0≤t≤6),那么:

(1)當(dāng)t為何值時(shí),△QAP是等腰直角三角形?

(2)當(dāng)t為何值時(shí),以點(diǎn)Q、A、P為頂點(diǎn)的三角形與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,EF是對(duì)角線BD上的兩點(diǎn)且BE=DF,聯(lián)結(jié)AE,CF

求證:AE=CF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,點(diǎn)D、E分別在邊AB、AC上,點(diǎn)FCD上.

1)若∠AED=ACB, DEF= B,求證:EF//AB

2)若D、EF分別是AB、AC、CD的中點(diǎn),連接BF,若四邊形 BDEF的面積為6,試求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖⊙O的半徑為1cm,弦ABCD的長(zhǎng)度分別為,則弦AC、BD所夾的銳角

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P為定角∠AOB的平分線上的一個(gè)定點(diǎn),且∠MPN∠AOB互補(bǔ),若∠MPN在繞點(diǎn)P旋轉(zhuǎn)的過程中,其兩邊分別與OA、OB相交于MN兩點(diǎn),則以下結(jié)論:(1PM=PN恒成立;(2OM+ON的值不變;(3)四邊形PMON的面積不變;(4MN的長(zhǎng)不變,其中正確的個(gè)數(shù)為(  )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)分別是A2,0)、B0,4)、C-3,0),把△ABC沿x軸向右平移4個(gè)單位,得到△A1B1C1

1)在圖中以黑點(diǎn)為原點(diǎn)建立平面直角坐標(biāo)系,畫出△ABC△A1B1C1

2)寫出A1、B1、C1各點(diǎn)的坐標(biāo);

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在中,,,將如圖擺放,使得的兩條邊分別經(jīng)過點(diǎn)和點(diǎn)

1)當(dāng)將如圖1擺放時(shí),則_________度.

2)當(dāng)將如圖2擺放時(shí),請(qǐng)求出的度數(shù),并說明理由.

3)能否將擺放到某個(gè)位置時(shí),使得同時(shí)平分?直接寫出結(jié)論_______(填不能

查看答案和解析>>

同步練習(xí)冊(cè)答案