【題目】如圖,在平面直角坐標(biāo)系中,正方形的頂點與坐標(biāo)原點重合,點的坐標(biāo)為,點軸的負(fù)半軸上,點分別在邊,上,且,,一次函數(shù)的圖象過點,反比例函數(shù)的圖象經(jīng)過點,且與的交點為

(1)直接寫出反比例函數(shù)解析式   一次函數(shù)的解析式        ;

(2)若點在直線上,且使OPM的面積與四邊形的面積相等,求點的坐標(biāo).

【答案】(1),;(2) 坐標(biāo)為

【解析】(1)由正方形OABC的頂點C坐標(biāo),確定出邊長,及四個角為直角,根據(jù)AD=2DB,求出AD的長,確定出D坐標(biāo),代入反比例解析式求出m的值,再由AM=2MO,確定出MO的長,即M坐標(biāo),將MD坐標(biāo)代入一次函數(shù)解析式求出kb的值,即可確定出一次函數(shù)解析式;

(2)把y=3代入反比例解析式求出x的值,確定出N坐標(biāo),得到NC的長,設(shè)P(x,y),根據(jù)OPM的面積與四邊形OMNC的面積相等,求出y的值,進(jìn)而得到x的值,確定出P坐標(biāo)即可.

1) 正方形 的頂點 ,

,

,

,

坐標(biāo)代入 得:,

反比例解析式為 ,

,

,即 ,

坐標(biāo)代入 中得:

解得:

則直線 解析式為 ;)

(2) 把 代入 得:,

,即 ,

設(shè) ,

的面積與四邊形 的面積相等,

OM=1;OC=3

,

解得:

當(dāng) 時,

當(dāng) 時,,

坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(11分)如圖1,點A(a,b)在平面直角坐標(biāo)系xOy中,點A到坐標(biāo)軸的垂線段AB,AC與坐標(biāo)軸圍成矩形OBAC,當(dāng)這個矩形的一組鄰邊長的和與積相等時,點A稱作“垂點”,矩形稱作“垂點矩形”.

(1)在點P(1,2),Q(2,-2),N(,-1)中,是“垂點”的點為 ;

(2)點M(-4,m)是第三象限的“垂點”,直接寫出m的值 ;

(3)如果“垂點矩形”的面積是,且“垂點”位于第二象限,寫出滿足條件的“垂點”的坐標(biāo) ;

(4)如圖2,平面直角坐標(biāo)系的原點O是正方形DEFG的對角線的交點,當(dāng)正方形DEFG的邊上存在“垂點”時,GE的最小值為8.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABCD的兩邊ABAD的長是關(guān)于x的方程x2mx0的兩個實數(shù)根.

(1)當(dāng)m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;

(2)AB的長為2,那么ABCD的周長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①AOB=COD=90°,OM平分∠AOC,ON平分∠BOD.

(1)已知∠BOC=20°,且∠AOD小于平角,求∠MON的度數(shù);

(2)若(1)中∠BOC=α,其它條件不變,求∠MON的度數(shù);

(3)如圖②,若∠BOC=α,且∠AOD大于平角,其它條件不變,求∠MON的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,將三角形CDE繞點C逆時針旋轉(zhuǎn)75°,點E的對應(yīng)點N恰好落在OA上,則 的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:五蓮縣新瑪特購物中心第一次用5000元購進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進(jìn)價和售價如下表(注:獲利=售價﹣進(jìn)價)

進(jìn)價(元/件)

20

30

售價(元/件)

29

40

(1)新瑪特購物中心將第一次購進(jìn)的甲、乙兩種商品全部賣完后一共可獲得多少利潤?

(2)該購物中心第二次以第一次的進(jìn)價又購進(jìn)甲、乙兩種商品,其中甲種商品的件數(shù)不變,乙種商品的件數(shù)是第一次的3倍;甲商品按原價銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得總利潤比第一次獲得的總利潤多160元,求第二次乙種商品是按原價打幾折銷售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A的坐標(biāo)為(0,1),點B是x軸正半軸上的一動點,以AB為邊作等腰直角△ABC,使∠BAC=90°,取BC的中點P.當(dāng)點B從點O向x軸正半軸移動到點M(2,0)時,則點P移動的路線長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平行四邊形ABCD中,,FAD的中點,作,垂足E在線段上,連接EF、CF,則下列結(jié)論;;中一定成立的是______ 把所有正確結(jié)論的序號都填在橫線上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知BCOA,BA100°,試回答下列問題:

(1)如圖①所示,試說明OBAC;

(2)如圖②,若點E,FBC上,且滿足∠FOCAOC,并且OE平分∠BOF.則∠EOC的度數(shù)等于________(在橫線上填上答案即可)

(3)(2)的條件下,若平行移動AC,如圖③,那么∠OCB∶∠OFB的值是否隨之發(fā)生變化?若變化,試說明理由;若不變,求出這個比值;

(4)(3)的條件下,在平行移動AC的過程中,若使∠OEBOCA,此時∠OCA的度數(shù)等于________(在橫線上填上答案即可).

查看答案和解析>>

同步練習(xí)冊答案