【題目】已知x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的兩個實數(shù)根.
(1)是否存在實數(shù)a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,請你說明理由;
(2)求使(x1+1)(x2+1)為正整數(shù)的實數(shù)a的整數(shù)值.
【答案】(1)24;(2)a=0 ,3,4,5.
【解析】試題分析: 根據(jù)根與系數(shù)的關(guān)系求得將已知等式變形為即通過解該關(guān)于的方程即可求得的值;
(2)根據(jù)限制性條件“為正整數(shù)”求得的取值范圍,然后在取值范圍內(nèi)取的整數(shù)值.
試題解析:∵是一元二次方程的兩個實數(shù)根,
∴由根與系數(shù)的關(guān)系可知,
∵一元二次方程有兩個實數(shù)根,
∴且a6≠0,
解得, ,且a≠6;
(1)∵
∴
即
解得,a=24>0;
∴存在實數(shù)a,使成立,a的值是24;
(2)∵
∴當(dāng)為正整數(shù)時, 且a6是6的約數(shù),
∴
∴使為正整數(shù)的實數(shù)a的整數(shù)值有
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某自行車廠一周計劃生產(chǎn)150輛自行車,平均每天生產(chǎn)輛,由于各種原因?qū)嶋H每天生產(chǎn)量與計劃量相比有出入,下表是某周的生產(chǎn)情況(超產(chǎn)為正、減產(chǎn)為負):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 |
(1)根據(jù)記錄可知前三天共生產(chǎn) 輛;
(2)產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn) 輛;
(3)該廠實行計劃工資制,每輛車元,超額完成任務(wù)每輛獎元,少生產(chǎn)一輛扣元,那么該廠工人這一周的工資總額是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料:
點A、B在數(shù)軸上分別表示實數(shù)a,b,A,B兩點之間的距離表示為|AB|
當(dāng)A、B兩點中有一點在原點時,設(shè)點A在原點,如圖①|AB|=|OB|=|b|=|a﹣b|
當(dāng)A、B兩點都不在原點時,
(1)如圖②,點A,B都在原點的右邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|
(2)如圖③,點A、B都在原點的左邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|
(3)如圖④,點A、B在原點的兩邊,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|
綜上所述,數(shù)軸上A、B兩點之間的距離|AB|=|a﹣b|
請用上面的知識解答下面的問題:
(1)數(shù)軸上表示﹣2和﹣4的兩點之間的距離是 ,數(shù)軸上表示1和﹣3的兩點之間的距離是 .
(2)數(shù)軸上表示x和﹣1的兩點A和B之間的距離是 ,如果|AB|=2,那么x為 .
(3)當(dāng)|x+1|+|x﹣2|=5時的整數(shù)x的值 .
(4)當(dāng)|x+1|+|x﹣2|取最小值時,相應(yīng)的x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形 OABC 的 頂 點 A(0,3),C(- 1,0). 將 矩 形 OABC 繞原點順時針旋轉(zhuǎn) 900,得到矩形 OA’B’C’.解答下列問題:
(1)求出直線 BB’的函數(shù)解析式;
(2)直線 BB’與 x 軸交于點 M、與 y 軸交于點N,拋物線 y = ax2+ bx + c 的圖象經(jīng)過點C、M、N,求拋物線的函數(shù)解析式.
(3)將△MON 沿直線 MN 翻折,點 O 落在點P 處,請你判斷點 P 是否在拋物線上,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:AB=AC,PA=PC,若PA為△ABC的外接圓⊙O的切線
(1) 求證:PC為⊙O的切線;
(2) 連接BP,若sin∠BAC=,求tan∠BPC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C;
(2)平移△ABC,若點A的對應(yīng)點A2的坐標(biāo)為(0,﹣4),畫出平移后對應(yīng)的△A2B2C2 ;
(3)若將△A1B1C繞某一點旋轉(zhuǎn)可以得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,A、O兩點的坐標(biāo)分別為(2,0),(0,0),點P在正比例函數(shù)y=x(x>0)圖象上運動,則滿足△PAO為等腰三角形的P點的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的內(nèi)心,以O為圓心,r為半徑的圓與線段AB有公共點,則r的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標(biāo)是(3,0),點C的坐標(biāo)是(0,-3),動點P在拋物線上.
(1)b =_________,c =_________,點B的坐標(biāo)為_____________;(直接填寫結(jié)果)
(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標(biāo);若不存在,說明理由;
(3)過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時,求出點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com