【題目】如圖,在△ABC中,點D在△ABC的內(nèi)部且DB=DC,點E,F在在△ABC的外部,FB=FA,EA=EC,∠FBA=∠DBC=∠ECA.
解答下列問題:
(1)①填空:△ACE∽_________∽___________;
②求證:△CDE∽△CBA;
(2)求的值;
(3)若點D在∠BAC的平分線上,判斷四邊形AFDE的形狀,并說明理由.
【答案】(1)①△ABF,△BCD②證明見解析(2)=1(3)四邊形AFDE是菱形,理由見解析
【解析】
(1)①根據(jù)等腰三角形的性質(zhì)得到∠DBC=∠DCB,∠FBA=∠FAB,∠ACE=∠EAC,等量代換得到∠FAB=∠BCD=∠EAC,于是得到結(jié)論;②根據(jù)相似三角形的性質(zhì)得到,根據(jù)相似三角形的判定定理即可得到結(jié)論;
(2)根據(jù)相似三角形的性質(zhì)得到∠EDC=∠FBD,∠FDB=∠ACB等量代換得到∠FDB=∠ACB,根據(jù)全等三角形的判定即可得到結(jié)論;
(3)根據(jù)全等三角形的性質(zhì)得到FB=DE,DF=CE,等量代換得到FD=AE,FA=DE,推出四邊形AFDE是平行四邊形,連接AD,于是得到AD平分∠BAC,根據(jù)菱形的判定定理即可得到結(jié)論.
解:(1)①△ABF,△BCD
②∵BD=DC,EA=EC,
∴∠DBC=∠DCB,∠EAC=∠ECA,又∠DBC=∠ECA,
∴∠DBC=∠EAC
∴△ACE∽△BCD,
∴,∠ECD=∠ACB,
∴△CDE∽△CBA
(2)∵△CDE∽△CBA,∠CDE=∠CBA=∠DBF;
同理,△BFD∽△BAC,
∠FDB=∠ACB=∠ECD,BD=CD,
∴△FBD≌△EDC,
∴FD=EC,=1
(3)AFDE是菱形
∵△FBD≌△EDC,
∴FB=FA=DE,FD=EC=EA
∴AFDE是平行四邊形,
∴FA∥DE,連接AD,∠FAD=∠EDA,
又點D在∠BAC的平分線上,∠BAD=∠CAD
∴∠FAD=∠EAD=∠EDA,
∴EA=ED
∴AFDE是菱形
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)交于、,與軸、軸分別交于點.
(1)求一次函數(shù)和反比例函數(shù)的表達式;
(2)求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中, AB=AC=10,線段BC在軸上,BC=12,點B的坐標為(-3,0),線段AB交軸于點E,過A作AD⊥BC于D,動點P從原點出發(fā),以每秒3個單位的速度沿軸向右運動,設(shè)運動的時間為秒.
(1)當△BPE是等腰三角形時,求的值;
(2)若點P運動的同時,△ABC以B為位似中心向右放大,且點C向右運動的速度為每秒2個單位,△ABC放大的同時高AD也隨之放大,當以EP為直徑的圓與動線段AD所在直線相切時,求的值和此時點C的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,E,F分別是AB,DC上的點,且,連接DE,BF,AF.
(1)求證:四邊形DEBF是平行四邊形;
(2)若AF平分,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,△ABC的三個頂點都在格點上,點A、B、C的坐標分別為(-2,4)、(-2,0)、(-4,1),結(jié)合所給的平面直角坐標系解答下列問題:
(1)將△ABC繞O點逆時針旋轉(zhuǎn)90°,得到△A1B1C1;
(2)以點P(-1,1)為位似中心,在△ABC的異側(cè)作位似變換,且使△ABC的面積擴大為原來的4倍,得到△A2B2C2,并寫出點A2的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列方程:
(1)(y+2)2-(3y-1)2=0;
(2)5(x-3)2=x2-9;
(3)t2-t+=0.
(4)2x2+7x+3=0(配方法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的y與x的部分對應(yīng)值如表:
x | 1 | 0 | 2 | 3 | 4 |
y | 5 | 0 | 4 | 3 | 0 |
下列結(jié)論:①拋物線的開口向上;②拋物線的對稱軸為直線x=2;③當0<x<4時,y>0;④拋物線與x軸的兩個交點間的距離是4;⑤若A(,2),B(,3)是拋物線上兩點,則,其中正確的個數(shù)是 ( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線AN上有一點B,AB=5,tan∠MAN=,點C從點A出發(fā)以每秒3個單位長度的速度沿射線AN運動,過點C作CD⊥AN交射線AM于點D,在射線CD上取點F,使得CF=CB,連結(jié)AF.設(shè)點C的運動時間是t(秒)(t>0).
(1)當點C在點B右側(cè)時,求AD、DF的長.(用含t的代數(shù)式表示)
(2)連結(jié)BD,設(shè)△BCD的面積為S平方單位,求S與t之間的函數(shù)關(guān)系式.
(3)當△AFD是軸對稱圖形時,直接寫出t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com