【題目】美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設AB =xm,花園面積S.
(1)求S關于x的函數(shù)關系式,求x的取值范圍;
(2)若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(含邊界,不考慮樹的粗細),求花園面積S的最大值.
【答案】(1)S =-x2+28x (0﹤x﹤28);(2)195平方米
【解析】
(1)根據(jù)題意得出AB=x,BC=28-x,求出S的表達式即可;(2)在P處有一棵樹與墻CD,AD的距離分別是15m和6m,則x的取值范圍6≤x≤13,然后求出S的最大值即可.
(1)由題意可得出:AB=x,BC=28-x,則S=x(28-x)=-x2+28x,x的取值范圍0﹤x﹤28;
(2)∵在P處有一棵樹與墻CD,AD的距離分別是15m和6m,
∴28-x≥15,x≥6,
∴x的取值范圍6≤x≤13,
∵S=-x2+28x=-(x-14)2+196,
∴a=-1﹤0,
∴當6≤x≤13時.S隨x的增大而增大,
∴x=13時,S取到最大值為:S=-(13-14)2+196=195,
則花園面積S的最大值為195平方米.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,半徑為1的圓心角為60°的扇形紙片OAB在直線L上向右做無滑動的滾動.且滾動至扇形O′A′B′處,則頂點O所經(jīng)過的路線總長是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在線段BD上,在BD的同側作等腰Rt△ABC和等腰Rt△ADE,∠ABC=∠ADE=90° ,CD與BE、AE分別交于點P、M.
求證:(1)△BAE∽△CAD;
(2)2CB2=CPCM.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一名在校大學生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品的成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于16元/件,市場調查發(fā)現(xiàn),該產(chǎn)品每天的銷售量(件與銷售價(元/件)之間的函數(shù)關系如圖所示.
(1)求與之間的函數(shù)關系式,并寫出自變量的取值范圍;
(2)求每天的銷售利潤W(元與銷售價(元/件)之間的函數(shù)關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,點M從點D出發(fā),以每秒2個單位長度的速度向點A運動,同時,點N從點B出發(fā),以每秒1個單位長度的速度向點C運動.其中一個動點到達終點時,另一個動點也隨之停止運動.過點N作NP⊥AD于點P,連接AC交NP于點Q,連接MQ.設運動時間為t秒.
(1)AM= ,AP= .(用含t的代數(shù)式表示)
(2)當四邊形ANCP為平行四邊形時,求t的值
(3)如圖2,將△AQM沿AD翻折,得△AKM,是否存在某時刻t,
①使四邊形AQMK為為菱形,若存在,求出t的值;若不存在,請說明理由
②使四邊形AQMK為正方形,求 出AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(-4,n),B(2,-4)是一次函數(shù)y=kx+b和反比例函數(shù)y=的圖象的兩個交點.
(1)求一次函數(shù)和反比例函數(shù)的表達式;
(2)觀察圖象,直接寫出方程kx+b-=0的解;
(3)觀察圖象,直接寫出不等式kx+b-<0的解集;
(4)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+3的圖象經(jīng)過點 (-3,0),(2,-5).
(1)試確定此二次函數(shù)的解析式;
(2)請你判斷點P(-2,3)是否在這個二次函數(shù)的圖象上?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把一個足球垂直地面向上踢,(秒)后該足球的高度(米)適用公式.
(1)經(jīng)多少秒時足球的高度為20米?
(2)小明同學說:“足球高度不可能達到21米!”你認為他說得對嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com