9.已知菱形ABCD的兩條對角線長分別為4和5,則其面積為10.

分析 由菱形ABCD的兩條對角線長分別為4和5,根據(jù)菱形的面積等于對角線積的一半,即可求得其面積.

解答 解:∵菱形ABCD的兩條對角線長分別為4和5,
∴其面積為:$\frac{1}{2}$×4×5=10.
故答案為:10.

點(diǎn)評 此題考查了菱形的性質(zhì).注意熟記定理是解此題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.小明在課外學(xué)習(xí)時(shí)遇到這樣一個(gè)問題:
定義:如果二次函數(shù)y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常數(shù))與y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常數(shù))滿足a1+a2=0,b1=b2,c1+c2=0,則稱這兩個(gè)函數(shù)互為“旋轉(zhuǎn)函數(shù)”.
求y=-x2+3x-2函數(shù)的“旋轉(zhuǎn)函數(shù)”.
小明是這樣思考的:由y=-x2+3x-2函數(shù)可知a1=-1,b1=3,c1=-3,根據(jù)a1+a2=0,b1=b2,c1+c2=0求出a2,b2,c2,就能確定這個(gè)函數(shù)的“旋轉(zhuǎn)函數(shù)”.
請參考小明的方法解決下面的問題:
(1)寫出函數(shù)y=-x2+3x-2的“旋轉(zhuǎn)函數(shù)”;
(2)若函數(shù)y=-x2+$\frac{4}{3}$mx-2與y=x2-2nx+n互為“旋轉(zhuǎn)函數(shù)”,求(m+n)2015的值;
(3)已知函數(shù)y=-$\frac{1}{2}$(x+1)(x-4)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A,B,C關(guān)于原點(diǎn)的對稱點(diǎn)分別是A1,B1,C1,試證明經(jīng)過點(diǎn)A1,B1,C1的二次函數(shù)與函數(shù)y=-$\frac{1}{2}$(x+1)(x-4)互為“旋轉(zhuǎn)函數(shù)”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.(1)計(jì)算:$\sqrt{8}$+|2$\sqrt{2}$-3|-($\frac{1}{3}$)-1-(2016+$\sqrt{2}$)0;
(2)求下列方程中的x:
①(x-1)2=49;
②-8(1-x)3=27.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.如圖,已知函數(shù)y=-$\frac{1}{2}$x+b的圖象與x軸、y軸分別交于點(diǎn)A、B,與函數(shù)y=x的圖象交于點(diǎn)M,點(diǎn)M的橫坐標(biāo)為2.
(1)求點(diǎn)A的坐標(biāo);
(2)在x軸上有一點(diǎn)動點(diǎn)P (a,0)(其中a>2),過點(diǎn)P作x軸的垂線,分別交函數(shù)y=-$\frac{1}{2}$x+b和y=x的圖象于點(diǎn)C、D,且OB=2CD,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.解下列不等式組,并將解集在數(shù)軸上表示出來.
$\left\{\begin{array}{l}{\frac{x-1}{2}≤1}\\{x-2<4(x+1)}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

14.用科學(xué)記數(shù)法表示0.000 0201=2.01×10-5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,一直線BC與已知直線AB:y=2x+1關(guān)于y軸對稱.
(1)求直線BC的解析式;
(2)說明兩直線與x軸圍成的三角形是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.a(chǎn)的3倍與2的和小于或等于4,用不等式表示為3a+2≤4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.據(jù)統(tǒng)計(jì),第十三屆中國•四川光霧山紅葉節(jié)實(shí)現(xiàn)旅游收入約為14.36億元,則近似數(shù)14.36億元精確到(  )
A.百分位B.百萬位C.千萬位D.0.01

查看答案和解析>>

同步練習(xí)冊答案