學(xué)完“證明(二)”一章后,老師布置了一道思考題:如圖,點M、N分別在正三角形ABC的邊BC.CA上,且BM=CN,AM、BN交于點Q。求證:∠BQM=60°。
(1)請你完成這道思考題;
(2)做完(1)后,同學(xué)們在老師的啟發(fā)下進(jìn)行了反思,提出了許多問題,如:
①若將題中“BM=CN”與“∠BQM=60°”的位置交換,得到的是否仍是真命題?
②若將題中的點M,N分別移動到BC,CA的延長線上,是否仍能得到∠BQM=60°?
③若將題中的條件“點M,N分別在正三角形ABC的BC、CA邊上”改為“點M,N分別在正方形ABCD的BC,CD邊上”,是否仍能得到∠BQM=60°?對②,③進(jìn)行證明。(自己畫出對應(yīng)的圖形)
(1)見解析;(2)①是;②是;③否
解析試題分析:(1)根據(jù)正三角形的性質(zhì)可得AB=BC,∠ABM=∠BCN,再結(jié)合BM=CN根據(jù)“SAS”可證得△ABM△BCN,可得∠BAM=∠CBN,即可求得結(jié)果;
(2)①仍為真命題;②易證△BAN△ACM(SAS),可得∠1=∠2,∠N=∠M,即可求得結(jié)果;
③易證△ABM△BCN(SAS),可得∠1=∠2,又∠2+∠3=90°,即得∠BQM=∠1+∠3=∠2+∠3=90°.
(1)∵正三角形ABC
∴AB=BC,∠ABM=∠BCN
∵BM=CN
∴△ABM△BCN(SAS)
∴∠BAM=∠CBN,
∴∠BQM=∠BAQ+∠ABQ=∠MBQ+∠ABQ=60°;
(2)①仍為真命題;
②如圖:
易證△BAN△ACM(SAS)
∴∠1=∠2,∠N=∠M
又∠BQM=∠N+∠QAN=∠N+∠2=∠M+∠2=∠ACB=60°;
③如圖
此時不能得到∠BQM=60°,而有∠BQM=90°
易證△ABM△BCN(SAS)
∴∠1=∠2,又∠2+∠3=90°,
∴∠BQM=∠1+∠3=∠2+∠3=90°.
考點:等邊三角形的性質(zhì),全等三角形的判定及性質(zhì)
點評:判定兩個三角形全等的一般方法有:SSS、SAS、ASA、HL.判定兩個三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江西省九年級第一次段考數(shù)學(xué)試卷(解析版) 題型:解答題
學(xué)完“證明(二)”一章后,老師布置了一道思考題:如圖,點M、N分別在正三角形ABC的邊BC.CA上,且BM=CN,AM、BN交于點Q。求證:∠BQM=60°。
(1)請你完成這道思考題;
(2)做完(1)后,同學(xué)們在老師的啟發(fā)下進(jìn)行了反思,提出了許多問題,如:
①若將題中“BM=CN”與“∠BQM=60°”的位置交換,得到的是否仍是真命題?
②若將題中的點M,N分別移動到BC,CA的延長線上,是否仍能得到∠BQM=60°?
③若將題中的條件“點M,N分別在正三角形ABC的BC、CA邊上”改為“點M,N分別在正方形ABCD的BC,CD邊上”,是否仍能得到∠BQM=60°?對②,③進(jìn)行證明。(自己畫出對應(yīng)的圖形)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com